BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 30261168)

  • 1. Characterization and Repurposing of Type I and Type II CRISPR-Cas Systems in Bacteria.
    Hidalgo-Cantabrana C; Goh YJ; Barrangou R
    J Mol Biol; 2019 Jan; 431(1):21-33. PubMed ID: 30261168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and applications of Type I CRISPR-Cas systems.
    Hidalgo-Cantabrana C; Barrangou R
    Biochem Soc Trans; 2020 Feb; 48(1):15-23. PubMed ID: 31922192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations.
    Wang J; Zhang C; Feng B
    J Cell Mol Med; 2020 Mar; 24(6):3256-3270. PubMed ID: 32037739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology.
    Ishino Y; Krupovic M; Forterre P
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29358495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type II anti-CRISPR proteins as a new tool for synthetic biology.
    Zhang Y; Marchisio MA
    RNA Biol; 2021 Aug; 18(8):1085-1098. PubMed ID: 32991234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Type IV-A CRISPR-Cas System in
    Crowley VM; Catching A; Taylor HN; Borges AL; Metcalf J; Bondy-Denomy J; Jackson RN
    CRISPR J; 2019 Dec; 2(6):434-440. PubMed ID: 31809194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering.
    Liu Q; Zhang H; Huang X
    FEBS J; 2020 Feb; 287(4):626-644. PubMed ID: 31730297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finally, Archaea Get Their CRISPR-Cas Toolbox.
    Gophna U; Allers T; Marchfelder A
    Trends Microbiol; 2017 Jun; 25(6):430-432. PubMed ID: 28391963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling and enhancing CRISPR systems.
    Shivram H; Cress BF; Knott GJ; Doudna JA
    Nat Chem Biol; 2021 Jan; 17(1):10-19. PubMed ID: 33328654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type III CRISPR-Cas System: Introduction And Its Application for Genetic Manipulations.
    Liu T; Pan S; Li Y; Peng N; She Q
    Curr Issues Mol Biol; 2018; 26():1-14. PubMed ID: 28879852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
    Terns MP
    Mol Cell; 2018 Nov; 72(3):404-412. PubMed ID: 30388409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shooting the messenger: RNA-targetting CRISPR-Cas systems.
    Zhu Y; Klompe SE; Vlot M; van der Oost J; Staals RHJ
    Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29748239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.
    Murugan K; Babu K; Sundaresan R; Rajan R; Sashital DG
    Mol Cell; 2017 Oct; 68(1):15-25. PubMed ID: 28985502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPRCasTyper: Automated Identification, Annotation, and Classification of CRISPR-Cas Loci.
    Russel J; Pinilla-Redondo R; Mayo-Muñoz D; Shah SA; Sørensen SJ
    CRISPR J; 2020 Dec; 3(6):462-469. PubMed ID: 33275853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
    Hendel A; Bak RO; Clark JT; Kennedy AB; Ryan DE; Roy S; Steinfeld I; Lunstad BD; Kaiser RJ; Wilkens AB; Bacchetta R; Tsalenko A; Dellinger D; Bruhn L; Porteus MH
    Nat Biotechnol; 2015 Sep; 33(9):985-989. PubMed ID: 26121415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems.
    O'Connell MR
    J Mol Biol; 2019 Jan; 431(1):66-87. PubMed ID: 29940185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaches to study CRISPR RNA biogenesis and the key players involved.
    Behler J; Hess WR
    Methods; 2020 Feb; 172():12-26. PubMed ID: 31325492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of Microbial Diversity to Discover Novel Molecular Technologies.
    Zhang F
    Keio J Med; 2019; 68(1):26. PubMed ID: 30905885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems.
    Briner AE; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type II Anti-CRISPR Proteins.
    Hwang S; Maxwell KL
    J Mol Biol; 2023 Apr; 435(7):168041. PubMed ID: 36893938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.