These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30261344)

  • 1. Halloysite-alkaline phosphatase system-A potential bioactive component of scaffold for bone tissue engineering.
    Pietraszek A; Karewicz A; Widnic M; Lachowicz D; Gajewska M; Bernasik A; Nowakowska M
    Colloids Surf B Biointerfaces; 2019 Jan; 173():1-8. PubMed ID: 30261344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive hydrogel scaffolds reinforced with alkaline-phosphatase containing halloysite nanotubes for bone repair applications.
    Pietraszek A; Ledwójcik G; Lewandowska-Łańcucka J; Horak W; Lach R; Łatkiewicz A; Karewicz A
    Int J Biol Macromol; 2020 Nov; 163():1187-1195. PubMed ID: 32653373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-assisted calcium phosphate biomineralization on an inert alumina surface.
    Aminian A; Pardun K; Volkmann E; Li Destri G; Marletta G; Treccani L; Rezwan K
    Acta Biomater; 2015 Feb; 13():335-43. PubMed ID: 25462843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles.
    Shankar S; Kasapis S; Rhim JW
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1824-1832. PubMed ID: 30017990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface functionalization of halloysite nanotubes with supermagnetic iron oxide, chitosan and 2-D calcium-phosphate nanoflakes for synergistic osteoconduction enhancement of human adipose tissue-derived mesenchymal stem cells.
    Lee YJ; Lee SC; Jee SC; Sung JS; Kadam AA
    Colloids Surf B Biointerfaces; 2019 Jan; 173():18-26. PubMed ID: 30261345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halloysite nanoclay reinforced hydroxyapatite porous scaffold for hard tissue regeneration.
    Yadav U; Verma V
    J Mech Behav Biomed Mater; 2023 Apr; 140():105626. PubMed ID: 36739825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair.
    Saber-Samandari S; Yekta H; Ahmadi S; Alamara K
    Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering.
    Shakir M; Jolly R; Khan MS; Rauf A; Kazmi S
    Int J Biol Macromol; 2016 Dec; 93(Pt A):276-289. PubMed ID: 27543347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel reinforced scaffold based on chitosan/cellulose nanocrystals/halloysite nanotubes for curcumin delivery.
    Doustdar F; Olad A; Ghorbani M
    Carbohydr Polym; 2022 Apr; 282():119127. PubMed ID: 35123751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine.
    Dumont VC; Mansur HS; Mansur AA; Carvalho SM; Capanema NS; Barrioni BR
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1465-1478. PubMed ID: 27086294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel calcified gum Arabic porous nano-composite scaffold for bone tissue regeneration.
    Hadavi M; Hasannia S; Faghihi S; Mashayekhi F; Zadeh HH; Mostofi SB
    Biochem Biophys Res Commun; 2017 Jul; 488(4):671-678. PubMed ID: 28302485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of nanocomposite scaffolds based on biomineralization of N,O-carboxymethyl chitosan/fucoidan conjugates for bone tissue engineering.
    Lu HT; Lu TW; Chen CH; Lu KY; Mi FL
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2335-2345. PubMed ID: 30189280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering.
    Ngiam M; Liao S; Patil AJ; Cheng Z; Chan CK; Ramakrishna S
    Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications.
    Atak BH; Buyuk B; Huysal M; Isik S; Senel M; Metzger W; Cetin G
    Carbohydr Polym; 2017 May; 164():200-213. PubMed ID: 28325318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple, alkaline phosphatase based method.
    Jaroszewicz J; Idaszek J; Choinska E; Szlazak K; Hyc A; Osiecka-Iwan A; Swieszkowski W; Moskalewski S
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():319-328. PubMed ID: 30606539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.
    Lowe B; Venkatesan J; Anil S; Shim MS; Kim SK
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1479-1487. PubMed ID: 26921504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering.
    Asaoka T; Ohtake S; Furukawa KS; Tamura A; Ushida T
    J Biomed Mater Res A; 2013 Nov; 101(11):3295-300. PubMed ID: 23983180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The study of cell biocompatibility of new pattern biphasic calcium phosphate nanocomposite in vitro].
    Wang T; Tian WD; Liu L; Cheng XZ; Liao YM; Li SW
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2005 Apr; 23(2):106-9. PubMed ID: 15952617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: In Vitro and In Vivo Evaluation.
    Azami M; Tavakol S; Samadikuchaksaraei A; Hashjin MS; Baheiraei N; Kamali M; Nourani MR
    J Biomater Sci Polym Ed; 2012; 23(18):2353-68. PubMed ID: 22244095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced osteoblast responses to poly(methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering.
    Xing ZC; Han SJ; Shin YS; Koo TH; Moon S; Jeong Y; Kang IK
    J Biomater Sci Polym Ed; 2013; 24(1):61-76. PubMed ID: 22289639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.