BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 30261345)

  • 1. Surface functionalization of halloysite nanotubes with supermagnetic iron oxide, chitosan and 2-D calcium-phosphate nanoflakes for synergistic osteoconduction enhancement of human adipose tissue-derived mesenchymal stem cells.
    Lee YJ; Lee SC; Jee SC; Sung JS; Kadam AA
    Colloids Surf B Biointerfaces; 2019 Jan; 173():18-26. PubMed ID: 30261345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of bioactive hydroxyapatite@halloysite and its effect on MC3T3-E1 osteogenic differentiation of chitosan film.
    Zheng J; Wu F; Li H; Liu M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110072. PubMed ID: 31546464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-proliferative applications of laccase immobilized on super-magnetic chitosan-functionalized halloysite nanotubes.
    Kim M; Jee SC; Sung JS; Kadam AA
    Int J Biol Macromol; 2018 Oct; 118(Pt A):228-237. PubMed ID: 29913193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiolation of Chitosan Loaded over Super-Magnetic Halloysite Nanotubes for Enhanced Laccase Immobilization.
    Kadam AA; Sharma B; Shinde SK; Ghodake GS; Saratale GD; Saratale RG; Kim DY; Sung JS
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33419305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering.
    Dhivya S; Keshav Narayan A; Logith Kumar R; Viji Chandran S; Vairamani M; Selvamurugan N
    Cell Prolif; 2018 Feb; 51(1):. PubMed ID: 29159895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supermagnetic Sugarcane Bagasse Hydrochar for Enhanced Osteoconduction in Human Adipose Tissue-Derived Mesenchymal Stem Cells.
    Kim M; Jee SC; Sung JS; Kadam AA
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32916934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan-functionalized supermagnetic halloysite nanotubes for covalent laccase immobilization.
    Kadam AA; Jang J; Jee SC; Sung JS; Lee DS
    Carbohydr Polym; 2018 Aug; 194():208-216. PubMed ID: 29801831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalization of halloysite nanotube with chitosan reinforced poly (vinyl alcohol) nanocomposites for potential biomedical applications.
    Kouser S; Sheik S; Nagaraja GK; Prabhu A; Prashantha K; D'souza JN; Navada KM; Manasa DJ
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1079-1092. PubMed ID: 32991901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering.
    Suner SS; Demirci S; Yetiskin B; Fakhrullin R; Naumenko E; Okay O; Ayyala RS; Sahiner N
    Int J Biol Macromol; 2019 Jun; 130():627-635. PubMed ID: 30840861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response.
    Zhou WY; Guo B; Liu M; Liao R; Rabie AB; Jia D
    J Biomed Mater Res A; 2010 Jun; 93(4):1574-87. PubMed ID: 20014291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionally modified halloysite nanotubes for personalized bioapplications.
    Liao J; Wang H; Liu N; Yang H
    Adv Colloid Interface Sci; 2023 Jan; 311():102812. PubMed ID: 36427464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility.
    Liu M; Zhang Y; Wu C; Xiong S; Zhou C
    Int J Biol Macromol; 2012 Nov; 51(4):566-75. PubMed ID: 22743347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.
    Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG
    Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved.
    Xiao D; Zhang J; Zhang C; Barbieri D; Yuan H; Moroni L; Feng G
    Acta Biomater; 2020 Apr; 106():22-33. PubMed ID: 31926336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering.
    Kazemi-Aghdam F; Jahed V; Dehghan-Niri M; Ganji F; Vasheghani-Farahani E
    Carbohydr Polym; 2021 Oct; 269():118311. PubMed ID: 34294325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the surface characteristics of nano-crystalline and micro-particle calcium phosphate/chitosan composite films on the behavior of human mesenchymal stem cells in vitro.
    Lee YT; Yu BY; Shao HJ; Chang CH; Sun YM; Liu HC; Hou SM; Young TH
    J Biomater Sci Polym Ed; 2011; 22(17):2369-88. PubMed ID: 21144163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of polymer-ceramic nanocomposites containing drug loaded modified halloysite nanotubes.
    Ghaderi-Ghahfarrokhi M; Haddadi-Asl V; Zargarian SS
    J Biomed Mater Res A; 2018 May; 106(5):1276-1287. PubMed ID: 29314595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supermagnetically Tuned Halloysite Nanotubes Functionalized with Aminosilane for Covalent Laccase Immobilization.
    Kadam AA; Jang J; Lee DS
    ACS Appl Mater Interfaces; 2017 May; 9(18):15492-15501. PubMed ID: 28418639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of M-SAPO-34/chitosan scaffolds and evaluation of their effects on dental tissue engineering.
    Navidi G; Allahvirdinesbat M; Al-Molki SMM; Davaran S; Panahi PN; Aghazadeh M; Akbarzadeh A; Eftekhari A; Safa KD
    Int J Biol Macromol; 2021 Sep; 187():281-295. PubMed ID: 34314794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic differentiation ability of human mesenchymal stem cells on Chitosan/Poly (Caprolactone)/nano beta Tricalcium Phosphate composite scaffolds.
    Siddiqui N; Madala S; Rao Parcha S; Mallick SP
    Biomed Phys Eng Express; 2020 Jan; 6(1):015018. PubMed ID: 33438606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.