These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30261404)

  • 1. Arterial blood pressure feature estimation using photoplethysmography.
    Soltan Zadi A; Alex R; Zhang R; Watenpaugh DE; Behbehani K
    Comput Biol Med; 2018 Nov; 102():104-111. PubMed ID: 30261404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Modeling of Arterial Blood Pressure Using Photo- Plethysmography Signal in Breath-hold Maneuver.
    Zadi AS; Alex RM; Zhang R; Watenpaugh DE; Behbehani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2711-2714. PubMed ID: 30440963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable Piezoelectric-Based System for Continuous Beat-to-Beat Blood Pressure Measurement.
    Wang TW; Lin SF
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique.
    Nabeel PM; Jayaraj J; Mohanasankar S
    Physiol Meas; 2017 Nov; 38(12):2122-2140. PubMed ID: 29058686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive blood pressure estimation from wearable PPG sensors using peripheral artery pulse wave velocity measurements and multi-channel blind identification of local arterial dynamics.
    McCombie DB; Reisner AT; Asada HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3521-4. PubMed ID: 17946183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Neural Network Model for Blood Pressure Estimation Using Photoplethesmography without Electrocardiogram.
    Wang L; Zhou W; Xing Y; Zhou X
    J Healthc Eng; 2018; 2018():7804243. PubMed ID: 29707186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new noninvasive device for continuous arterial blood pressure monitoring in the superficial temporal artery.
    Chin KY; Panerai RB
    Physiol Meas; 2013 Apr; 34(4):407-21. PubMed ID: 23524512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Invasive Continuous Blood-Pressure Monitoring Models Based on Photoplethysmography and Electrocardiography.
    Wu H; Ji Z; Li M
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study.
    Shin H; Min SD
    Biomed Eng Online; 2017 Jan; 16(1):10. PubMed ID: 28086939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust blood pressure estimation from finger photoplethysmography using age-dependent linear models.
    Xing X; Ma Z; Zhang M; Gao X; Li Y; Song M; Dong WF
    Physiol Meas; 2020 Mar; 41(2):025007. PubMed ID: 32050194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram.
    Zahedi E; Sohani V; Ali MA; Chellappan K; Beng GK
    J Healthc Eng; 2015; 6(1):121-44. PubMed ID: 25708380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
    Miao F; Fu N; Zhang YT; Ding XR; Hong X; He Q; Li Y
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1730-1740. PubMed ID: 28463207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography.
    Kefeng Duan ; Zhiliang Qian ; Atef M; Guoxing Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6385-6388. PubMed ID: 28269709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven estimation of blood pressure using photoplethysmographic signals.
    Shi Chao Gao ; Wittek P; Li Zhao ; Wen Jun Jiang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():766-769. PubMed ID: 28324937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented blood pressure measurement through the noninvasive estimation of physiological arterial pressure variability.
    Soueidan K; Chen S; Dajani HR; Bolic M; Groza V
    Physiol Meas; 2012 Jun; 33(6):881-99. PubMed ID: 22551623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous blood pressure monitoring using ECG and finger photoplethysmogram.
    Chua CP; Heneghan C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5117-20. PubMed ID: 17946678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation.
    P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.
    Baek HJ; Kim KK; Kim JS; Lee B; Park KS
    Physiol Meas; 2010 Feb; 31(2):145-57. PubMed ID: 20009186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.