BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 30261600)

  • 41. Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions.
    Zhang P; Liu D; Shen H; Li Y; Nie Y
    Int J Mol Sci; 2015 Mar; 16(3):4713-30. PubMed ID: 25739084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GeLC-Orbitrap/MS and 2-DE-MALDI-TOF/TOF comparative proteomics analysis of seed cotyledons from the non-orthodox Quercus ilex tree species.
    Sghaier-Hammami B; Castillejo MÁ; Baazaoui N; Jorrín-Novo JV; Escandón M
    J Proteomics; 2021 Feb; 233():104087. PubMed ID: 33359940
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative proteomic analysis of seed embryo proteins associated with seed storability in rice (Oryza sativa L) during natural aging.
    Gao J; Fu H; Zhou X; Chen Z; Luo Y; Cui B; Chen G; Liu J
    Plant Physiol Biochem; 2016 Jun; 103():31-44. PubMed ID: 26950923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proteomic analysis of Lupinus angustifolius (var. Zeus and Bojar) and Lupinus luteus (var. Lord and Parys) seed proteins and their hydrolysates.
    Czubinski J; Montowska M; Pospiech E; Lampart-Szczapa E
    J Sci Food Agric; 2017 Dec; 97(15):5423-5430. PubMed ID: 28516510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mature forms of the major seed storage albumins in sunflower: A mass spectrometric approach.
    Franke B; Colgrave ML; Mylne JS; Rosengren KJ
    J Proteomics; 2016 Sep; 147():177-186. PubMed ID: 27185550
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.).
    Guo G; Lv D; Yan X; Subburaj S; Ge P; Li X; Hu Y; Yan Y
    BMC Plant Biol; 2012 Aug; 12():147. PubMed ID: 22900893
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aspects of the barley seed proteome during development and germination.
    Finnie C; Maeda K; ØStergaard O; Bak-Jensen KS; Larsen J; Svensson B
    Biochem Soc Trans; 2004 Jun; 32(Pt3):517-9. PubMed ID: 15157175
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteoform of Arabidopsis seed storage protein identified by functional proteomics approach exhibits acyl hydrolase activity during germination.
    Latha M; Dolui AK; Vijayaraj P
    Int J Biol Macromol; 2021 Mar; 172():452-463. PubMed ID: 33454325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein analysis reveals differential accumulation of late embryogenesis abundant and storage proteins in seeds of wild and cultivated amaranth species.
    Bojórquez-Velázquez E; Barrera-Pacheco A; Espitia-Rangel E; Herrera-Estrella A; Barba de la Rosa AP
    BMC Plant Biol; 2019 Feb; 19(1):59. PubMed ID: 30727945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The proteome of seed development in the model legume Lotus japonicus.
    Dam S; Laursen BS; Ornfelt JH; Jochimsen B; Staerfeldt HH; Friis C; Nielsen K; Goffard N; Besenbacher S; Krusell L; Sato S; Tabata S; Thøgersen IB; Enghild JJ; Stougaard J
    Plant Physiol; 2009 Mar; 149(3):1325-40. PubMed ID: 19129418
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 2-DE-based proteomic analysis of common bean (Phaseolus vulgaris L.) seeds.
    De La Fuente M; Borrajo A; Bermúdez J; Lores M; Alonso J; López M; Santalla M; De Ron AM; Zapata C; Alvarez G
    J Proteomics; 2011 Feb; 74(2):262-7. PubMed ID: 20971221
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis.
    Wang X; Kuang T; He Y
    BMC Plant Biol; 2010 Aug; 10():192. PubMed ID: 20799958
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa.
    Lyzenga WJ; Harrington M; Bekkaoui D; Wigness M; Hegedus DD; Rozwadowski KL
    BMC Plant Biol; 2019 Jul; 19(1):292. PubMed ID: 31272394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The proteins of the grape (Vitis vinifera L.) seed endosperm: fractionation and identification of the major components.
    Gazzola D; Vincenzi S; Gastaldon L; Tolin S; Pasini G; Curioni A
    Food Chem; 2014 Jul; 155():132-9. PubMed ID: 24594165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Initial proteome analysis of mature barley seeds and malt.
    Østergaard O; Melchior S; Roepstorff P; Svensson B
    Proteomics; 2002 Jun; 2(6):733-9. PubMed ID: 12112856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiological and proteomic analyses of coix seed aging during storage.
    Xu M; He D; Teng H; Chen L; Song H; Huang Q
    Food Chem; 2018 Sep; 260():82-89. PubMed ID: 29699686
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Current two-dimensional electrophoresis technology for proteomics.
    Görg A; Weiss W; Dunn MJ
    Proteomics; 2004 Dec; 4(12):3665-85. PubMed ID: 15543535
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.
    Liu H; Wang C; Komatsu S; He M; Liu G; Shen S
    J Proteomics; 2013 Oct; 91():23-40. PubMed ID: 23835435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteomic analysis of arabidopsis seed germination and priming.
    Gallardo K; Job C; Groot SP; Puype M; Demol H; Vandekerckhove J; Job D
    Plant Physiol; 2001 Jun; 126(2):835-48. PubMed ID: 11402211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative physiology and proteomics of two wheat genotypes differing in seed storage tolerance.
    Chen X; Yin G; Börner A; Xin X; He J; Nagel M; Liu X; Lu X
    Plant Physiol Biochem; 2018 Sep; 130():455-463. PubMed ID: 30077921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.