These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 30261699)
1. Tribological Behavior of the 316L Stainless Steel with Heterogeneous Lamella Structure. Qin W; Kang J; Li J; Yue W; Liu Y; She D; Mao Q; Li Y Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30261699 [TBL] [Abstract][Full Text] [Related]
2. An assessment of ultra fine grained 316L stainless steel for implant applications. Muley SV; Vidvans AN; Chaudhari GP; Udainiya S Acta Biomater; 2016 Jan; 30():408-419. PubMed ID: 26518104 [TBL] [Abstract][Full Text] [Related]
3. Effects of Titanium-Implanted Dose on the Tribological Properties of 316L Stainless Steel. Wang W; Fu Z; Zhu L; Yue W; Kang J; She D; Ren X; Wang C Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33803508 [TBL] [Abstract][Full Text] [Related]
4. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. II--Wear patterns. Berradja A; Willems G; Celis JP Aust Orthod J; 2006 May; 22(1):21-9. PubMed ID: 16792242 [TBL] [Abstract][Full Text] [Related]
5. Tribological behavior of artificial hip joint under the effects of magnetic field in dry and lubricated sliding. Zaki M; Aljinaidi A; Hamed M Biomed Mater Eng; 2003; 13(3):205-21. PubMed ID: 12883170 [TBL] [Abstract][Full Text] [Related]
6. Low friction and high strength of 316L stainless steel tubing for biomedical applications. Amanov A; Lee SW; Pyun YS Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():176-185. PubMed ID: 27987696 [TBL] [Abstract][Full Text] [Related]
7. Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades. Drozd K; Walczak M; Szala M; Gancarczyk K Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33142788 [TBL] [Abstract][Full Text] [Related]
8. Investigation into Friction and Wear Characteristics of 316L Stainless-Steel Wire at High Temperature. Huang M; Fu Y; Qiao X; Chen P Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614551 [TBL] [Abstract][Full Text] [Related]
9. Tribological Behavior of TiO Arieira A; Madeira S; Rodrigues F; Silva F Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984300 [TBL] [Abstract][Full Text] [Related]
10. Structural and Tribological Assessment of Biomedical 316 Stainless Steel Subjected to Pulsed-Plasma Surface Modification: Comparison of LPBF 3D Printing and Conventional Fabrication. Chabak Y; Efremenko B; Petryshynets I; Efremenko V; Lekatou AG; Zurnadzhy V; Bogomol I; Fedun V; Kovaľ K; Pastukhova T Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947267 [TBL] [Abstract][Full Text] [Related]
11. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel. Lin N; Liu Q; Zou J; Guo J; Li D; Yuan S; Ma Y; Wang Z; Wang Z; Tang B Materials (Basel); 2016 Oct; 9(11):. PubMed ID: 28773996 [TBL] [Abstract][Full Text] [Related]
12. Development of wear resistant NFSS-HA novel biocomposites and study of their tribological properties for orthopaedic applications. Younesi M; Bahrololoom ME; Fooladfar H J Mech Behav Biomed Mater; 2010 Feb; 3(2):178-88. PubMed ID: 20129417 [TBL] [Abstract][Full Text] [Related]
13. Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: Properties. Kulka M; Mikołajczak D; Dziarski P; Panfil-Pryka D Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072983 [TBL] [Abstract][Full Text] [Related]
14. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L. Kao WH; Su YL; Horng JH; Zhang KX J Biomater Appl; 2016 Aug; 31(2):215-29. PubMed ID: 27422714 [TBL] [Abstract][Full Text] [Related]
15. Microstructure and Wear Resistance of Multi-Layer Ni-Based Alloy Cladding Coating on 316L SS under Different Laser Power. Qian S; Dai Y; Guo Y; Zhang Y Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562226 [TBL] [Abstract][Full Text] [Related]
16. Tribological properties of Zr61Ti2Cu25Al12 bulk metallic glass under simulated physiological conditions. Wang Y; Shi LL; Duan DL; Li S; Xu J Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():292-304. PubMed ID: 24582252 [TBL] [Abstract][Full Text] [Related]
17. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. I--Frictional behaviour. Berradja A; Willems G; Celis JP Aust Orthod J; 2006 May; 22(1):11-9. PubMed ID: 16792241 [TBL] [Abstract][Full Text] [Related]
18. The coefficient of friction of UHMWPE along an entire walking cycle using a ball-on-disc tribometer under arthrokinematics and loading conditions prescribed by ISO 14243-3:2014. Barceinas-Sanchez JDO; Alvarez-Vera M; Montoya-Santiyanes LA; Dominguez-Lopez I; Garcia-Garcia AL J Mech Behav Biomed Mater; 2017 Jan; 65():274-280. PubMed ID: 27608425 [TBL] [Abstract][Full Text] [Related]
19. High Temperature Dry Tribological Behavior of Nb-Microalloyed Bearing Steel 100Cr6. Zhu Y; Li J; Zhang C; Wang W; Wang H Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576438 [TBL] [Abstract][Full Text] [Related]
20. Oscillatory device for use with linear tribometer, for tribological evaluation of biomaterials. Athayde JN; Siqueira CJM; Kuromoto NK; Cambraia HN Rev Sci Instrum; 2017 Jul; 88(7):075004. PubMed ID: 28764530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]