These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30262296)

  • 1. Feasibility of the use of a handheld XRF analyzer to measure skin iron to monitor iron levels in critical organs.
    Dao E; Zeller MP; Wainman BC; Farquharson MJ
    J Trace Elem Med Biol; 2018 Dec; 50():305-311. PubMed ID: 30262296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the accuracy of a portable
    Bangash SU; McNeill FE; Farquharson MJ
    Biomed Phys Eng Express; 2024 Apr; 10(3):. PubMed ID: 38604150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of skin Fe levels as a surrogate marker for organ Fe levels, to monitor treatment in cases of iron overload.
    Farquharson MJ; Bagshaw AP; Porter JB; Abeysinghe RD
    Phys Med Biol; 2000 May; 45(5):1387-96. PubMed ID: 10843111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of a
    Bangash SUK; McNeill FE; Farquharson MJ; Chettle DR
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36317248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.
    Specht AJ; Parish CN; Wallens EK; Watson RT; Nie LH; Weisskopf MG
    Sci Total Environ; 2018 Feb; 615():398-403. PubMed ID: 28988075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The feasibility of a sensitive low-dose method for the in vivo evaluation of Fe in skin using K-shell x-ray fluorescence (XRF).
    Farquharson MJ; Bradley DA
    Phys Med Biol; 1999 Apr; 44(4):955-65. PubMed ID: 10232808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchtop x-ray fluorescence to quantify elemental content in nails non-destructively.
    Specht AJ; Adesina KE; Read DE; Weisskopf MG
    Sci Total Environ; 2024 Mar; 918():170601. PubMed ID: 38309346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of X-ray fluorescence capabilities for nail and hair matrices through zinc measurement in keratin reference materials.
    Fleming DEB; Kaiser MG; Rankin BD; Schenkels KMM
    J Trace Elem Med Biol; 2023 May; 77():127136. PubMed ID: 36716562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo quantification of lead in bone with a portable x-ray fluorescence system--methodology and feasibility.
    Nie LH; Sanchez S; Newton K; Grodzins L; Cleveland RO; Weisskopf MG
    Phys Med Biol; 2011 Feb; 56(3):N39-51. PubMed ID: 21242629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.
    Shehab H; Desouza ED; O'Meara J; Pejović-Milić A; Chettle DR; Fleming DE; McNeill FE
    Physiol Meas; 2016 Jan; 37(1):145-61. PubMed ID: 26683849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of bone lead measured via portable x-ray fluorescence across and within bones.
    Specht AJ; Dickerson AS; Weisskopf MG
    Environ Res; 2019 May; 172():273-278. PubMed ID: 30822560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of portable X-ray fluorescence (PXRF) in vivo as an alternative technique for the assessment of iron levels in patients with thalassemia and hemochromatosis.
    Estevam M; Appoloni CR
    Health Phys; 2013 Feb; 104(2):132-8. PubMed ID: 23274815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Portable X-ray fluorescence of zinc applied to human toenail clippings.
    Fleming DEB; Crook SL; Evans CT; Nader MN; Atia M; Hicks JMT; Sweeney E; McFarlane CR; Kim JS; Keltie E; Adisesh A
    J Trace Elem Med Biol; 2020 Dec; 62():126603. PubMed ID: 32623095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing arsenic in human toenail clippings using portable X-ray fluorescence.
    Fleming DEB; Crook SL; Evans CT; Nader MN; Atia M; Hicks JMT; Sweeney E; McFarlane CR; Kim JS; Keltie E; Adisesh A
    Appl Radiat Isot; 2021 Jan; 167():109491. PubMed ID: 33121893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance comparison of two Olympus InnovX handheld x-ray analyzers for feasibility of measuring arsenic in skin in vivo - Alpha and Delta models.
    Desouza ED; Gherase MR; Fleming DE; Chettle DR; O'Meara JM; McNeill FE
    Appl Radiat Isot; 2017 May; 123():82-93. PubMed ID: 28260610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a portable XRF device for in vivo quantification of lead in bone among a US population.
    Zhang X; Specht AJ; Wells E; Weisskopf MG; Weuve J; Nie LH
    Sci Total Environ; 2021 Jan; 753():142351. PubMed ID: 33207470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a portable XRF spectrometer for the non-invasive analysis of museum metal artefacts.
    Karydas AG
    Ann Chim; 2007 Jul; 97(7):419-32. PubMed ID: 17867530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the feasibility of using a portable X-ray fluorescence (XRF) analyzer in the field for measurement of lead content of sieved soil.
    Markey AM; Clark CS; Succop PA; Roda S
    J Environ Health; 2008 Mar; 70(7):24-9; quiz 55-6. PubMed ID: 18348388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Chemical Analysis of Archaeological Slag Material Using Handheld X-ray Fluorescence Spectrometry.
    Scott RB; Eekelers K; Degryse P
    Appl Spectrosc; 2016 Jan; 70(1):94-109. PubMed ID: 26767636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Portable X-ray fluorescence for bone lead measurements of Australian eagles.
    Hampton JO; Specht AJ; Pay JM; Pokras MA; Bengsen AJ
    Sci Total Environ; 2021 Oct; 789():147998. PubMed ID: 34051503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.