These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 3026248)

  • 1. Catalysis of superoxide dismutation by manganese aminopolycarboxylate complexes.
    Koppenol WH; Levine F; Hatmaker TL; Epp J; Rush JD
    Arch Biochem Biophys; 1986 Dec; 251(2):594-9. PubMed ID: 3026248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seven-coordinate iron and manganese complexes with acyclic and rigid pentadentate chelates and their superoxide dismutase activity.
    Liu GF; Filipović M; Heinemann FW; Ivanović-Burmazović I
    Inorg Chem; 2007 Oct; 46(21):8825-35. PubMed ID: 17880209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of superoxide radical in the autoxidation of cytochrome c.
    Cassell RH; Fridovich I
    Biochemistry; 1975 May; 14(9):1866-8. PubMed ID: 164898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The superoxide dismutase activity of iron complexes.
    Halliwell B
    FEBS Lett; 1975 Aug; 56(1):34-8. PubMed ID: 169154
    [No Abstract]   [Full Text] [Related]  

  • 5. Reaction of oxygen with 6-hydroxydopamine catalyzed by Cu, Fe, Mn, and V complexes: identification of a thermodynamic window for effective metal catalysis.
    Bandy B; Walter PB; Moon J; Davison AJ
    Arch Biochem Biophys; 2001 May; 389(1):22-30. PubMed ID: 11370668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the superoxide dismutase-like activity of cimetidine-Cu(II) complexes.
    Goldstein S; Czapski G
    Free Radic Res Commun; 1991; 12-13 Pt 1():205-10. PubMed ID: 1649090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Among a range of transition metals and ligands vanadium.desferroxamine excels in accelerating reactivity of ferrocytochrome c toward molecular oxygen.
    Davison AJ; Wu Q; Moon J; Stern A
    Biochem Cell Biol; 1994; 72(5-6):169-74. PubMed ID: 7840935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide-driven NAD(P)H oxidation induced by EDTA-manganese complex and mercaptoethanol.
    Paoletti F; Mocali A; Aldinucci D
    Chem Biol Interact; 1990; 76(1):3-18. PubMed ID: 2168295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of 2,3-dimethyl-1,4-naphthohydroquinone auto-oxidation by copper and by superoxide dismutase.
    Munday R
    Free Radic Biol Med; 1999 Jun; 26(11-12):1475-9. PubMed ID: 10401611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saturation behavior of the manganese-containing superoxide dismutase from Paracoccus denitrificans.
    Terech A; Pucheault J; Ferradini C
    Biochem Biophys Res Commun; 1983 May; 113(1):114-20. PubMed ID: 6860328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The superoxide dismutase activities of two higher valent manganese complexes, MnIV desferrioxamine and MnIII-cyclam.
    Rush JD; Maskos Z; Koppenol WH
    Arch Biochem Biophys; 1991 Aug; 289(1):97-102. PubMed ID: 1654850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide dismutase-like activity of metal substituted lactoferrin derivatives.
    Ishisaka R; Kanno T; Kanematsu H; Utsumi T; Akiyama J; Horton AA; Yoshioka T
    Physiol Chem Phys Med NMR; 1998; 30(1):1-13. PubMed ID: 9807232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A potent superoxide dismutase mimic: manganese beta-octabromo-meso-tetrakis-(N-methylpyridinium-4-yl) porphyrin.
    Batinić-Haberle I; Liochev SI; Spasojević I; Fridovich I
    Arch Biochem Biophys; 1997 Jul; 343(2):225-33. PubMed ID: 9224734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese(III) biliverdin IX dimethyl ester: a powerful catalytic scavenger of superoxide employing the Mn(III)/Mn(IV) redox couple.
    Spasojević I; Batinić-Haberle I; Stevens RD; Hambright P; Thorpe AN; Grodkowski J; Neta P; Fridovich I
    Inorg Chem; 2001 Feb; 40(4):726-39. PubMed ID: 11225116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional aspects of the superoxide dismutative action of Cu-penicillamine.
    Lengfelder E; Fuchs C; Younes M; Weser U
    Biochim Biophys Acta; 1979 Apr; 567(2):492-502. PubMed ID: 36162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic properties of Cu,Zn-superoxide dismutase as a function of metal content--order restored.
    Goldstein S; Fridovich I; Czapski G
    Free Radic Biol Med; 2006 Sep; 41(6):937-41. PubMed ID: 16934676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide dismutase mimics based on iron in vivo.
    Nagano T; Hirano T; Hirobe M
    J Biol Chem; 1989 Jun; 264(16):9243-9. PubMed ID: 2542303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired superoxide-dismutase mimics: The effects of functionalization with cationic polyarginine peptides.
    Ching HY; Kenkel I; Delsuc N; Mathieu E; Ivanović-Burmazović I; Policar C
    J Inorg Biochem; 2016 Jul; 160():172-9. PubMed ID: 26916739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide dismutation by low molecular weight Cu-complexes.
    Lengfelder E; Weser U
    Bull Eur Physiopathol Respir; 1981; 17 Suppl():73-80. PubMed ID: 6265011
    [No Abstract]   [Full Text] [Related]  

  • 20. When do metal complexes protect the biological system from superoxide toxicity and when do they enhance it?
    Czapski G; Goldstein S
    Free Radic Res Commun; 1986; 1(3):157-61. PubMed ID: 2577732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.