These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3026249)

  • 1. Comparison of the energetics of lactose active transport: artificial versus enzyme-associated energy source.
    Chen LI; Chen CH
    Arch Biochem Biophys; 1986 Dec; 251(2):606-15. PubMed ID: 3026249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic studies of lactose active transport in Escherichia coli membrane vesicles.
    Chen LI; Chen CH
    Arch Biochem Biophys; 1986 May; 246(2):515-24. PubMed ID: 3010862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delata psi, delta pH, and Delta mu H+.
    Kaczorowski GJ; Robertson DE; Kaback HR
    Biochemistry; 1979 Aug; 18(17):3697-704. PubMed ID: 38837
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of the specific pyruvate transport system in Escherichia coli K-12.
    Lang VJ; Leystra-Lantz C; Cook RA
    J Bacteriol; 1987 Jan; 169(1):380-5. PubMed ID: 3025181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles.
    Letellier L; Shechter E
    Eur J Biochem; 1979 Dec; 102(2):441-7. PubMed ID: 118877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics and molecular biology of active transport in bacterial membrane vesicles.
    Kaback HR; Ramos S; Robertson DE; Stroobant P; Tokuda H
    J Supramol Struct; 1977; 7(3-4):443-61. PubMed ID: 357844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport studies in bacterial membrane vesicles.
    Kaback HR
    Science; 1974 Dec; 186(4167):882-92. PubMed ID: 4620043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR
    Symp Soc Exp Biol; 1973; 27():145-74. PubMed ID: 4594375
    [No Abstract]   [Full Text] [Related]  

  • 9. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli.
    Reenstra WW; Patel L; Rottenberg H; Kaback HR
    Biochemistry; 1980 Jan; 19(1):1-9. PubMed ID: 6986161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms.
    Eagon RG; Gitter BD; Rowe JJ
    J Supramol Struct; 1977; 7(1):49-59. PubMed ID: 415185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase.
    Matsushita K; Kaback HR
    Biochemistry; 1986 May; 25(9):2321-7. PubMed ID: 3013300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.
    Ramos S; Schuldiner S; Kaback HR
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1892-6. PubMed ID: 6961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enthalpy changes in the formation of the proton electrochemical potential and its components.
    Pu RY; Wang Y; Chen CH
    Biophys Chem; 1995 Feb; 53(3):283-90. PubMed ID: 17020851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tobramycin uptake in Escherichia coli membrane vesicles.
    Leviton IM; Fraimow HS; Carrasco N; Dougherty TJ; Miller MH
    Antimicrob Agents Chemother; 1995 Feb; 39(2):467-75. PubMed ID: 7726517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles.
    Friedberg I; Kaback HR
    J Bacteriol; 1980 May; 142(2):651-8. PubMed ID: 7380805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from Escherichia coli.
    Stroobant P; Kaback HR
    Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3970-4. PubMed ID: 672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport.
    Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3336-40. PubMed ID: 4343963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG; Hodge TW; Rake JB; Yarbrough JM
    Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of partial and selective reduction in the components of the proton-motive force on lactose uptake in Escherichia coli.
    Ahmed S; Booth IR
    Biochem J; 1981 Dec; 200(3):583-9. PubMed ID: 6282254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium-ion stimulated amino acid uptake in membrane vesicles of alkalophilic Bacillus no. 8-1.
    Kitada M; Horikoshi K
    J Biochem; 1980 Dec; 88(6):1757-64. PubMed ID: 6780545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.