These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3026249)

  • 41. The electrochemical proton gradient in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Mar; 16(5):848-54. PubMed ID: 14664
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli.
    Reeves JP; Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1917-21. PubMed ID: 4579004
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intrinsic characteristics of the proton pump in the luminal membrane of a tight urinary epithelium. The relation between transport rate and delta mu H.
    Andersen OS; Silveira JE; Steinmetz PR
    J Gen Physiol; 1985 Aug; 86(2):215-34. PubMed ID: 2995541
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Equilibrium between two forms of the lac carrier protein in energized and nonenergized membrane vesicles from Escherichia coli.
    Rudnick G; Schildiner S; Kaback HR
    Biochemistry; 1976 Nov; 15(23):5126-31. PubMed ID: 791364
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of electron donors on Ca2+-dependent K+ transport in one-step inside-out vesicles from the human erythrocyte membrane.
    Alvarez J; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1984 Mar; 771(1):23-7. PubMed ID: 6322845
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG; Chappell JB
    Biochem J; 1978 Feb; 170(2):395-405. PubMed ID: 205211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination of the absolute number of Escherichia coli membrane vesicles that catalyze active transport.
    Short SA; Kaback HR; Kaczorowski G; Fisher J; Walsh CT; Silverstein SC
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5032-6. PubMed ID: 4612538
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Erythromycin and azithromycin transport into Haemophilus influenzae ATCC 19418 under conditions of depressed proton motive force (delta mu H).
    Capobianco JO; Goldman RC
    Antimicrob Agents Chemother; 1990 Sep; 34(9):1787-91. PubMed ID: 2178338
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Energy-dependent binding of dansylgalactoside to the lac carrier protein: direct binding measurements.
    Schuldiner S; Weil R; Kaback HR
    Proc Natl Acad Sci U S A; 1976 Jan; 73(1):109-12. PubMed ID: 174094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Kaback HR
    Protein Sci; 1993 Jun; 2(6):1024-33. PubMed ID: 8318887
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physical mechanism for regulation of proton solute symport in Escherichia coli.
    Konings WN; Robillard GT
    Proc Natl Acad Sci U S A; 1982 Sep; 79(18):5480-4. PubMed ID: 6752949
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lactose transport in Escherichia coli cells. Dependence of kinetic parameters on the transmembrane electrical potential difference.
    Ghazi A; Shechter E
    Biochim Biophys Acta; 1981 Jun; 644(2):305-15. PubMed ID: 7020759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The contribution of DNA single-stranded order to the thermodynamics of duplex formation.
    Vesnaver G; Breslauer KJ
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3569-73. PubMed ID: 2023903
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidative phosphorylation by membrane vesicles from Bacillus alcalophilus.
    Guffanti AA; Bornstein RF; Krulwich TA
    Biochim Biophys Acta; 1981 May; 635(3):619-30. PubMed ID: 6165388
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generation of an electrochemical proton gradient by lactate efflux in membrane vesicles of Escherichia coli.
    Ten Brink B; Konings WN
    Eur J Biochem; 1980 Oct; 111(1):59-66. PubMed ID: 7002561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct measurement of lactose/proton symport in Escherichia coli membrane vesicles: further evidence for the involvement of histidine residue(s).
    Patel L; Garcia ML; Kaback HR
    Biochemistry; 1982 Nov; 21(23):5805-10. PubMed ID: 6295442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energetics of two-step binding of a chromophoric reaction product, trans-3-indoleacryloyl-CoA, to medium-chain acyl-coenzyme-A dehydrogenase.
    Qin L; Srivastava DK
    Biochemistry; 1998 Mar; 37(10):3499-508. PubMed ID: 9521671
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous reconstitution of Escherichia coli membrane vesicles with D-lactate and D-amino acid dehydrogenases.
    Haldar K; Olsiewski PJ; Walsh C; Kaczorowski GJ; Bhaduri A; Kaback HR
    Biochemistry; 1982 Sep; 21(19):4590-6. PubMed ID: 6128026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cytochrome o type oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation.
    Matsushita K; Patel L; Kaback HR
    Biochemistry; 1984 Sep; 23(20):4703-14. PubMed ID: 6093862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of protons in the mechanism of galactoside transport via the lactose permease of Escherichia coli.
    Page MG
    Biochim Biophys Acta; 1987 Feb; 897(1):112-26. PubMed ID: 3026476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.