These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3026249)

  • 61. Mechanism of autoenergized transport and nature of energy coupling for D-lactate in Escherichia coli.
    Kang SY
    J Bacteriol; 1978 Dec; 136(3):867-73. PubMed ID: 363697
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate.
    Boonstra J; Sips HJ; Konings WN
    Eur J Biochem; 1976 Oct; 69(1):35-44. PubMed ID: 791648
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Energetics underlying the process of long-chain fatty acid transport.
    Azizan A; Sherin D; DiRusso CC; Black PN
    Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Purification of the lactose:H+ carrier of Escherichia coli and characterization of galactoside binding and transport.
    Wright JK; Overath P
    Eur J Biochem; 1984 Feb; 138(3):497-508. PubMed ID: 6363073
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanisms of active transport in isolated bacterial membrane vesicles. X. Inactivation of D-lactate dehydrogenase and D-lactate dehydrogenase-coupled transport in Escherichia coli membrane vesicles by an acetylenic substrate.
    Walsh CT; Abeles RH; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7858-63. PubMed ID: 4565667
    [No Abstract]   [Full Text] [Related]  

  • 66. Sodium-dependent glutamate transport in membrane vesicles of Escherichia coli K-12.
    Kahane S; Marcus M; Barash H; Halpern YS
    FEBS Lett; 1975 Aug; 56(2):235-9. PubMed ID: 1098933
    [No Abstract]   [Full Text] [Related]  

  • 67. Concerted proton-electron transfer between ascorbic acid and cytochrome b561.
    Njus D; Jalukar V; Zu JA; Kelley PM
    Am J Clin Nutr; 1991 Dec; 54(6 Suppl):1179S-1183S. PubMed ID: 1660216
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence.
    Soekarjo M; Eisenhawer M; Kuhn A; Vogel H
    Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Delta mu Na+ drives the synthesis of ATP via an delta mu Na(+)-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1.
    Becher B; Müller V
    J Bacteriol; 1994 May; 176(9):2543-50. PubMed ID: 8169202
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux.
    Otto R; Sonnenberg AS; Veldkamp H; Konings WN
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5502-6. PubMed ID: 6254084
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reconstitution of active transport in proteoliposomes containing cytochrome o oxidase and lac carrier protein purified from Escherichia coli.
    Matsushita K; Patel L; Gennis RB; Kaback HR
    Proc Natl Acad Sci U S A; 1983 Aug; 80(16):4889-93. PubMed ID: 6308657
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Membrane electricity as a convertible energy currency for the cell.
    Skulachev VP
    Can J Biochem; 1980 Mar; 58(3):161-75. PubMed ID: 6245772
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The electrochemical proton gradient generated by the fumarate-reductase system in Escherichia coli and its bioenergetic implications.
    Hellingwerf KJ; Bolscher JG; Konings WN
    Eur J Biochem; 1981 Jan; 113(2):369-74. PubMed ID: 6258917
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Energetics and mechanisms of lactose translocation in isolated membrane vesicles of Escherichia coli.
    Kaczorowski GJ; Robertson DE; Garcia ML; Padan E; Patel L; LeBlanc G; Kaback HR
    Ann N Y Acad Sci; 1980; 358():307-21. PubMed ID: 7011148
    [No Abstract]   [Full Text] [Related]  

  • 75. The kinetic mechanism of galactoside/H+ cotransport in Escherichia coli.
    Wright JK
    Biochim Biophys Acta; 1986 Mar; 855(3):391-416. PubMed ID: 2418878
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Double proton transfer behavior and one-electron oxidation effect in double H-bonded glycinamide-formic acid complex.
    Li P; Bu Y
    J Chem Phys; 2004 Nov; 121(20):9971-81. PubMed ID: 15549872
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Membrane transport as a potential target for antibiotic action.
    Walsh CT; Kaback HR
    Ann N Y Acad Sci; 1974 May; 235(0):519-41. PubMed ID: 4604751
    [No Abstract]   [Full Text] [Related]  

  • 79. Active Thermochemical Tables: accurate enthalpy of formation of hydroperoxyl radical, HO2.
    Ruscic B; Pinzon RE; Morton ML; Srinivasan NK; Su MC; Sutherland JW; Michael JV
    J Phys Chem A; 2006 Jun; 110(21):6592-601. PubMed ID: 16722670
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The energetics of bacterial active transport.
    Simoni RD; Postma PW
    Annu Rev Biochem; 1975; 44():523-54. PubMed ID: 237462
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.