BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30262708)

  • 1. Fidelity of
    Charles Antony A; Alone PV
    J Genet; 2018 Sep; 97(4):953-964. PubMed ID: 30262708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect in the GTPase activating protein (GAP) function of eIF5 causes repression of GCN4 translation.
    Antony A C; Alone PV
    Biochem Biophys Res Commun; 2017 May; 486(4):1110-1115. PubMed ID: 28385532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection.
    Valásek L; Nielsen KH; Zhang F; Fekete CA; Hinnebusch AG
    Mol Cell Biol; 2004 Nov; 24(21):9437-55. PubMed ID: 15485912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered proteome in translation initiation fidelity defective eIF5
    Ram AK; Mallik M; Reddy RR; Suryawanshi AR; Alone PV
    Sci Rep; 2022 Mar; 12(1):5033. PubMed ID: 35322093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition.
    Llácer JL; Hussain T; Saini AK; Nanda JS; Kaur S; Gordiyenko Y; Kumar R; Hinnebusch AG; Lorsch JR; Ramakrishnan V
    Elife; 2018 Nov; 7():. PubMed ID: 30475211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon.
    Yoon HJ; Donahue TF
    Mol Cell Biol; 1992 Jan; 12(1):248-60. PubMed ID: 1729602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide.
    Zhou F; Zhang H; Kulkarni SD; Lorsch JR; Hinnebusch AG
    RNA; 2020 Apr; 26(4):419-438. PubMed ID: 31915290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression of membrane and soluble proteins derepresses GCN4 mRNA translation in the yeast Saccharomyces cerevisiae.
    Steffensen L; Pedersen PA
    Eukaryot Cell; 2006 Feb; 5(2):248-61. PubMed ID: 16467466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An upstream ORF with non-AUG start codon is translated in vivo but dispensable for translational control of GCN4 mRNA.
    Zhang F; Hinnebusch AG
    Nucleic Acids Res; 2011 Apr; 39(8):3128-40. PubMed ID: 21227927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosomal mutation in helix 32 of 18S rRNA alters fidelity of eukaryotic translation start site selection.
    Antony A C; Ram AK; Dutta K; Alone PV
    FEBS Lett; 2019 Apr; 593(8):852-867. PubMed ID: 30900251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between GCN2 and GCN4 expression, translation elongation factor 1 mutations and translational fidelity in yeast.
    Magazinnik T; Anand M; Sattlegger E; Hinnebusch AG; Kinzy TG
    Nucleic Acids Res; 2005; 33(14):4584-92. PubMed ID: 16100380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the structural genes for eukaryotic initiation factors 2 alpha and 2 beta of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA.
    Williams NP; Hinnebusch AG; Donahue TF
    Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7515-9. PubMed ID: 2678106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic translation initiation factor eIF5 promotes the accuracy of start codon recognition by regulating Pi release and conformational transitions of the preinitiation complex.
    Saini AK; Nanda JS; Martin-Marcos P; Dong J; Zhang F; Bhardwaj M; Lorsch JR; Hinnebusch AG
    Nucleic Acids Res; 2014 Sep; 42(15):9623-40. PubMed ID: 25114053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A network of eIF2β interactions with eIF1 and Met-tRNAi promotes accurate start codon selection by the translation preinitiation complex.
    Thakur A; Marler L; Hinnebusch AG
    Nucleic Acids Res; 2019 Mar; 47(5):2574-2593. PubMed ID: 30576497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast phenotypic assays on translational control.
    Lee B; Udagawa T; Singh CR; Asano K
    Methods Enzymol; 2007; 429():105-37. PubMed ID: 17913621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae.
    Huang HK; Yoon H; Hannig EM; Donahue TF
    Genes Dev; 1997 Sep; 11(18):2396-413. PubMed ID: 9308967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation initiation factor 2gamma mutant alters start codon selection independent of Met-tRNA binding.
    Alone PV; Cao C; Dever TE
    Mol Cell Biol; 2008 Nov; 28(22):6877-88. PubMed ID: 18794367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes.
    Luna RE; Arthanari H; Hiraishi H; Akabayov B; Tang L; Cox C; Markus MA; Luna LE; Ikeda Y; Watanabe R; Bedoya E; Yu C; Alikhan S; Wagner G; Asano K
    Biochemistry; 2013 Dec; 52(52):9510-8. PubMed ID: 24319994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation.
    Singh CR; Curtis C; Yamamoto Y; Hall NS; Kruse DS; He H; Hannig EM; Asano K
    Mol Cell Biol; 2005 Jul; 25(13):5480-91. PubMed ID: 15964804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5.
    Loughran G; Sachs MS; Atkins JF; Ivanov IP
    Nucleic Acids Res; 2012 Apr; 40(7):2898-906. PubMed ID: 22156057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.