These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30262736)

  • 1. Proteomics Analysis of SsNsd1-Mediated Compound Appressoria Formation in
    Li J; Zhang X; Li L; Liu J; Zhang Y; Pan H
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30262736
    [No Abstract]   [Full Text] [Related]  

  • 2. The GATA-type IVb zinc-finger transcription factor SsNsd1 regulates asexual-sexual development and appressoria formation in Sclerotinia sclerotiorum.
    Li J; Mu W; Veluchamy S; Liu Y; Zhang Y; Pan H; Rollins JA
    Mol Plant Pathol; 2018 Jul; 19(7):1679-1689. PubMed ID: 29227022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Formaldehyde Dehydrogenase SsFdh1 Is Regulated by and Functionally Cooperates with the GATA Transcription Factor SsNsd1 in Sclerotinia sclerotiorum.
    Zhu G; Yu G; Zhang X; Liu J; Zhang Y; Rollins JA; Li J; Pan H
    mSystems; 2019 Sep; 4(5):. PubMed ID: 31506263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum.
    Yu Y; Xiao J; Zhu W; Yang Y; Mei J; Bi C; Qian W; Qing L; Tan W
    Mol Plant Pathol; 2017 Oct; 18(8):1052-1061. PubMed ID: 27392818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmentally induced changes in the sclerotial proteome of Sclerotinia sclerotiorum.
    Liang Y; Rahman MH; Strelkov SE; Kav NN
    Fungal Biol; 2010 Aug; 114(8):619-27. PubMed ID: 20943173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SsSm1, a Cerato-platanin family protein, is involved in the hyphal development and pathogenic process of Sclerotinia sclerotiorum.
    Pan Y; Wei J; Yao C; Reng H; Gao Z
    Plant Sci; 2018 May; 270():37-46. PubMed ID: 29576085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum.
    Fan H; Yu G; Liu Y; Zhang X; Liu J; Zhang Y; Rollins JA; Sun F; Pan H
    Mol Plant Pathol; 2017 Sep; 18(7):963-975. PubMed ID: 27353472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal oxalate decarboxylase activity contributes to Sclerotinia sclerotiorum early infection by affecting both compound appressoria development and function.
    Liang X; Moomaw EW; Rollins JA
    Mol Plant Pathol; 2015 Oct; 16(8):825-36. PubMed ID: 25597873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival factor 1 contributes to the oxidative stress response and is required for full virulence of Sclerotinia sclerotiorum.
    Yu Y; Du J; Wang Y; Zhang M; Huang Z; Cai J; Fang A; Yang Y; Qing L; Bi C; Cheng J
    Mol Plant Pathol; 2019 Jul; 20(7):895-906. PubMed ID: 31074170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum.
    Li J; Zhang Y; Zhang Y; Yu PL; Pan H; Rollins JA
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Histone Deacetylase, Magnaporthe oryzae RPD3, Regulates Reproduction and Pathogenic Development in the Rice Blast Fungus.
    Lee SH; Farh ME; Lee J; Oh YT; Cho E; Park J; Son H; Jeon J
    mBio; 2021 Dec; 12(6):e0260021. PubMed ID: 34781734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factor SsFoxE3 activating SsAtg8 is critical for sclerotia, compound appressoria formation, and pathogenicity in Sclerotinia sclerotiorum.
    Jiao W; Yu H; Cong J; Xiao K; Zhang X; Liu J; Zhang Y; Pan H
    Mol Plant Pathol; 2022 Feb; 23(2):204-217. PubMed ID: 34699137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene disruption of an arabinofuranosidase/beta-xylosidase precursor decreases Sclerotinia sclerotiorum virulence on canola tissue.
    Yajima W; Liang Y; Kav NN
    Mol Plant Microbe Interact; 2009 Jul; 22(7):783-9. PubMed ID: 19522560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early Transcriptional Response to DNA Virus Infection in
    Ding F; Cheng J; Fu Y; Chen T; Li B; Jiang D; Xie J
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30893849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proteome of liquid Sclerotial exudates from Sclerotinia sclerotiorum.
    Liang Y; Strelkov SE; Kav NN
    J Proteome Res; 2010 Jun; 9(6):3290-8. PubMed ID: 20408562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Sclerotinia sclerotiorum cell wall proteome.
    Liu L; Free SJ
    Mol Plant Pathol; 2016 Aug; 17(6):985-95. PubMed ID: 26661933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sclerotinia sclerotiorum γ-glutamyl transpeptidase (Ss-Ggt1) is required for regulating glutathione accumulation and development of sclerotia and compound appressoria.
    Li M; Liang X; Rollins JA
    Mol Plant Microbe Interact; 2012 Mar; 25(3):412-20. PubMed ID: 22046959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of the phytogenic fungus Sclerotinia sclerotiorum.
    Otun S; Ntushelo K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 May; 1144():122053. PubMed ID: 32229427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea.
    Heard S; Brown NA; Hammond-Kosack K
    PLoS One; 2015; 10(6):e0130534. PubMed ID: 26107498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.