These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 30262855)
1. Integration of Molecular Interactome and Targeted Interaction Analysis to Identify a COPD Disease Network Module. Sharma A; Kitsak M; Cho MH; Ameli A; Zhou X; Jiang Z; Crapo JD; Beaty TH; Menche J; Bakke PS; Santolini M; Silverman EK Sci Rep; 2018 Sep; 8(1):14439. PubMed ID: 30262855 [TBL] [Abstract][Full Text] [Related]
2. Connecting COPD GWAS Genes: FAM13A Controls TGFβ2 Secretion by Modulating AP-3 Transport. Gong L; Bates S; Li J; Qiao D; Glass K; Wei W; Hsu VW; Zhou X; Silverman EK Am J Respir Cell Mol Biol; 2021 Nov; 65(5):532-543. PubMed ID: 34166600 [TBL] [Abstract][Full Text] [Related]
3. Susceptibility loci in lung cancer and COPD: association of IREB2 and FAM13A with pulmonary diseases. Ziółkowska-Suchanek I; Mosor M; Gabryel P; Grabicki M; Żurawek M; Fichna M; Strauss E; Batura-Gabryel H; Dyszkiewicz W; Nowak J Sci Rep; 2015 Aug; 5():13502. PubMed ID: 26310313 [TBL] [Abstract][Full Text] [Related]
4. Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Morrow JD; Zhou X; Lao T; Jiang Z; DeMeo DL; Cho MH; Qiu W; Cloonan S; Pinto-Plata V; Celli B; Marchetti N; Criner GJ; Bueno R; Washko GR; Glass K; Quackenbush J; Choi AM; Silverman EK; Hersh CP Sci Rep; 2017 Mar; 7():44232. PubMed ID: 28287180 [TBL] [Abstract][Full Text] [Related]
5. Genetic variants in FAM13A and IREB2 are associated with the susceptibility to COPD in a Chinese rural population: a case-control study. Zhang Y; Qiu J; Zhang P; Zhang J; Jiang M; Ma Z Int J Chron Obstruct Pulmon Dis; 2018; 13():1735-1745. PubMed ID: 29872291 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide association study on the FEV van der Plaat DA; de Jong K; Lahousse L; Faiz A; Vonk JM; van Diemen CC; Nedeljkovic I; Amin N; Brusselle GG; Hofman A; Brandsma CA; Bossé Y; Sin DD; Nickle DC; van Duijn CM; Postma DS; Boezen HM J Allergy Clin Immunol; 2017 Feb; 139(2):533-540. PubMed ID: 27612410 [TBL] [Abstract][Full Text] [Related]
8. Protein-protein interaction network analysis in chronic obstructive pulmonary disease. Bao H; Wang J; Zhou D; Han Z; Su L; Zhang Y; Ye X; Xu C; Wang Y; Li Q Lung; 2014 Feb; 192(1):87-93. PubMed ID: 24241792 [TBL] [Abstract][Full Text] [Related]
9. [Recent progress in genetic background of chronic obstructive pulmonary disease (COPD)]. Teramoto S Nihon Rinsho; 2016 May; 74(5):733-42. PubMed ID: 27254938 [TBL] [Abstract][Full Text] [Related]
10. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction. Lamontagne M; Timens W; Hao K; Bossé Y; Laviolette M; Steiling K; Campbell JD; Couture C; Conti M; Sherwood K; Hogg JC; Brandsma CA; van den Berge M; Sandford A; Lam S; Lenburg ME; Spira A; Paré PD; Nickle D; Sin DD; Postma DS Thorax; 2014 Nov; 69(11):997-1004. PubMed ID: 25182044 [TBL] [Abstract][Full Text] [Related]
11. Candidate genes for COPD: current evidence and research. Kim WJ; Lee SD Int J Chron Obstruct Pulmon Dis; 2015; 10():2249-55. PubMed ID: 26527870 [TBL] [Abstract][Full Text] [Related]
12. Korytina GF; Akhmadishina LZ; Viktorova EV; Kochetova OV; Viktorova TV Indian J Med Res; 2016 Dec; 144(6):865-876. PubMed ID: 28474623 [TBL] [Abstract][Full Text] [Related]
13. Enriching Human Interactome with Functional Mutations to Detect High-Impact Network Modules Underlying Complex Diseases. Cui H; Srinivasan S; Korkin D Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31731769 [TBL] [Abstract][Full Text] [Related]
14. Beyond GWAS in COPD: probing the landscape between gene-set associations, genome-wide associations and protein-protein interaction networks. McDonald ML; Mattheisen M; Cho MH; Liu YY; Harshfield B; Hersh CP; Bakke P; Gulsvik A; Lange C; Beaty TH; Silverman EK; Hum Hered; 2014; 78(3-4):131-9. PubMed ID: 25171373 [TBL] [Abstract][Full Text] [Related]
15. Discovering the genes mediating the interactions between chronic respiratory diseases in the human interactome. Maiorino E; Baek SH; Guo F; Zhou X; Kothari PH; Silverman EK; Barabási AL; Weiss ST; Raby BA; Sharma A Nat Commun; 2020 Feb; 11(1):811. PubMed ID: 32041952 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive analysis of gene-expression profile in chronic obstructive pulmonary disease. Wei L; Xu D; Qian Y; Huang G; Ma W; Liu F; Shen Y; Wang Z; Li L; Zhang S; Chen Y Int J Chron Obstruct Pulmon Dis; 2015; 10():1103-9. PubMed ID: 26089660 [TBL] [Abstract][Full Text] [Related]
17. Quantitative analysis of lungs and airways with CT in subjects with the chronic obstructive pulmonary disease (COPD) candidate FAM13A gene: case control study for CT quantification in COPD risk gene. Choo JY; Lee KY; Shin C; Kim S; Lee SK; Kang EY; Oh YW; Paik SH; Kim BH; Je BK; Lee JB J Comput Assist Tomogr; 2014; 38(4):597-603. PubMed ID: 24651745 [TBL] [Abstract][Full Text] [Related]
18. Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations. Lamontagne M; Bérubé JC; Obeidat M; Cho MH; Hobbs BD; Sakornsakolpat P; de Jong K; Boezen HM; ; Nickle D; Hao K; Timens W; van den Berge M; Joubert P; Laviolette M; Sin DD; Paré PD; Bossé Y Hum Mol Genet; 2018 May; 27(10):1819-1829. PubMed ID: 29547942 [TBL] [Abstract][Full Text] [Related]
19. MOSES: A New Approach to Integrate Interactome Topology and Functional Features for Disease Gene Prediction. Petti M; Farina L; Francone F; Lucidi S; Macali A; Palagi L; De Santis M Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828319 [TBL] [Abstract][Full Text] [Related]