These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 30262951)
1. Genomics and Biochemistry of Metabolic Pathways for the C Orlova MV; Tarlachkov SV; Kulinchenko EI; Dubinina GA; Tutukina MN; Grabovich MY Indian J Microbiol; 2018 Dec; 58(4):415-422. PubMed ID: 30262951 [TBL] [Abstract][Full Text] [Related]
3. Sulfur and methane oxidation by a single microorganism. Gwak JH; Awala SI; Nguyen NL; Yu WJ; Yang HY; von Bergen M; Jehmlich N; Kits KD; Loy A; Dunfield PF; Dahl C; Hyun JH; Rhee SK Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2114799119. PubMed ID: 35914169 [TBL] [Abstract][Full Text] [Related]
4. Beggiatoa leptomitoformis sp. nov., the first freshwater member of the genus capable of chemolithoautotrophic growth. Dubinina G; Savvichev A; Orlova M; Gavrish E; Verbarg S; Grabovich M Int J Syst Evol Microbiol; 2017 Feb; 67(2):197-204. PubMed ID: 27902215 [TBL] [Abstract][Full Text] [Related]
5. Genomic insights into metabolic versatility of a lithotrophic sulfur-oxidizing diazotrophic Alphaproteobacterium Azospirillum thiophilum. Orlova MV; Tarlachkov SV; Dubinina GA; Belousova EV; Tutukina MN; Grabovich MY FEMS Microbiol Ecol; 2016 Dec; 92(12):. PubMed ID: 27660606 [TBL] [Abstract][Full Text] [Related]
6. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Keltjens JT; Pol A; Reimann J; Op den Camp HJ Appl Microbiol Biotechnol; 2014; 98(14):6163-83. PubMed ID: 24816778 [TBL] [Abstract][Full Text] [Related]
7. [Lithoautotrophic growth of the freshwater colorless sulfur bacterium Beggiatoa "leptomitiformis" D-402]. Patritskaia VIu; Grabovich MIu; Muntian MS; Dubinina GA Mikrobiologiia; 2001; 70(2):182-8. PubMed ID: 11386050 [TBL] [Abstract][Full Text] [Related]
9. Correction for Fomenkov et al., "Complete Genome Sequence of the Freshwater Colorless Sulfur Bacterium Beggiatoa leptomitoformis Neotype Strain D-402 Fomenkov A; Vincze T; Grabovich MY; Dubinina G; Orlova M; Belousova E; Roberts RJ Genome Announc; 2018 Apr; 6(16):. PubMed ID: 29674555 [No Abstract] [Full Text] [Related]
10. Lanthanide-Dependent Methanol and Formaldehyde Oxidation in Yanpirat P; Nakatsuji Y; Hiraga S; Fujitani Y; Izumi T; Masuda S; Mitsui R; Nakagawa T; Tani A Microorganisms; 2020 May; 8(6):. PubMed ID: 32486139 [TBL] [Abstract][Full Text] [Related]
11. Methylotrophy in Mycobacteria: Dissection of the Methanol Metabolism Pathway in Mycobacterium smegmatis. Dubey AA; Wani SR; Jain V J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29891642 [TBL] [Abstract][Full Text] [Related]
12. Methylotrophy in freshwater Beggiatoa alba strains. Jewell T; Huston SL; Nelson DC Appl Environ Microbiol; 2008 Sep; 74(17):5575-8. PubMed ID: 18621874 [TBL] [Abstract][Full Text] [Related]
13. Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Barber RD; Donohue TJ Biochemistry; 1998 Jan; 37(2):530-7. PubMed ID: 9425073 [TBL] [Abstract][Full Text] [Related]
14. Comparative Genomics of Versantvoort W; Guerrero-Cruz S; Speth DR; Frank J; Gambelli L; Cremers G; van Alen T; Jetten MSM; Kartal B; Op den Camp HJM; Reimann J Front Microbiol; 2018; 9():1672. PubMed ID: 30140258 [TBL] [Abstract][Full Text] [Related]
15. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway. Welander PV; Metcalf WW J Bacteriol; 2008 Mar; 190(6):1928-36. PubMed ID: 18178739 [TBL] [Abstract][Full Text] [Related]
16. Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament. MacGregor BJ; Biddle JF; Harbort C; Matthysse AG; Teske A Mar Genomics; 2013 Sep; 11():53-65. PubMed ID: 24012537 [TBL] [Abstract][Full Text] [Related]
17. Paving the way for synthetic C1 - Metabolism in Pseudomonas putida through the reductive glycine pathway. Bruinsma L; Wenk S; Claassens NJ; Martins Dos Santos VAP Metab Eng; 2023 Mar; 76():215-224. PubMed ID: 36804222 [TBL] [Abstract][Full Text] [Related]
18. Lanthanide-Dependent Methylotrophs of the Family Wegner CE; Gorniak L; Riedel S; Westermann M; Küsel K Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31604774 [TBL] [Abstract][Full Text] [Related]
19. Lanthanide-Dependent Regulation of Methylotrophy in Masuda S; Suzuki Y; Fujitani Y; Mitsui R; Nakagawa T; Shintani M; Tani A mSphere; 2018; 3(1):. PubMed ID: 29404411 [No Abstract] [Full Text] [Related]
20. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol. Nguyen AD; Kim D; Lee EY BMC Genomics; 2019 Feb; 20(1):130. PubMed ID: 30755173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]