These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 30263050)

  • 1. Methods to evaluate rare variants gene-age interaction for triglycerides.
    Gao TH; Zhang J; Miguelangel DM; Wang X
    BMC Proc; 2018; 12(Suppl 9):49. PubMed ID: 30263050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing gene-environment interactions for rare and/or common variants in sequencing association studies.
    Zhao Z; Zhang J; Sha Q; Hao H
    PLoS One; 2020; 15(3):e0229217. PubMed ID: 32155162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test Gene-Environment Interactions for Multiple Traits in Sequencing Association Studies.
    Zhang J; Sha Q; Hao H; Zhang S; Gao XR; Wang X
    Hum Hered; 2019; 84(4-5):170-196. PubMed ID: 32417835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Test for rare variants by environment interactions in sequencing association studies.
    Lin X; Lee S; Wu MC; Wang C; Chen H; Li Z; Lin X
    Biometrics; 2016 Mar; 72(1):156-64. PubMed ID: 26229047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general statistic to test an optimally weighted combination of common and/or rare variants.
    Zhang J; Wu B; Sha Q; Zhang S; Wang X
    Genet Epidemiol; 2019 Dec; 43(8):966-979. PubMed ID: 31498476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting association of rare and common variants by testing an optimally weighted combination of variants.
    Sha Q; Wang X; Wang X; Zhang S
    Genet Epidemiol; 2012 Sep; 36(6):561-71. PubMed ID: 22714994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting association of rare and common variants based on cross-validation prediction error.
    Yang X; Wang S; Zhang S; Sha Q
    Genet Epidemiol; 2017 Apr; 41(3):233-243. PubMed ID: 28176359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting association of rare and common variants by testing an optimally weighted combination of variants with longitudinal data.
    Wang S; Fang S; Sha Q; Zhang S
    BMC Proc; 2014; 8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S91. PubMed ID: 25519418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing optimally weighted combination of variants for hypertension.
    Zhao X; Sha Q; Zhang S; Wang X
    BMC Proc; 2014; 8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S59. PubMed ID: 25519394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating gene-environment interaction in testing for association with rare genetic variants.
    Chen H; Meigs JB; Dupuis J
    Hum Hered; 2014; 78(2):81-90. PubMed ID: 25060534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene-based analysis of rare and common variants to determine association with blood pressure.
    Liu X; Beyene J
    BMC Proc; 2014; 8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S46. PubMed ID: 25519387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified association test for rare and common variants based on affected sib-pair design.
    Guo Y; Zhou Y
    J Theor Biol; 2019 Apr; 467():1-6. PubMed ID: 30707975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite kernel machine regression based on likelihood ratio test for joint testing of genetic and gene-environment interaction effect.
    Zhao N; Zhang H; Clark JJ; Maity A; Wu MC
    Biometrics; 2019 Jun; 75(2):625-637. PubMed ID: 30430548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Powerful Pathway-Based Adaptive Test for Genetic Association with Common or Rare Variants.
    Pan W; Kwak IY; Wei P
    Am J Hum Genet; 2015 Jul; 97(1):86-98. PubMed ID: 26119817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Logistic Principal Component Analysis for Rare Variants in Gene-Environment Interaction Analysis.
    Lu M; Lee HS; Hadley D; Huang JZ; Qian X
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1020-8. PubMed ID: 26357039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Powerful statistical method to detect disease-associated genes using publicly available genome-wide association studies summary data.
    Zhang J; Zhao Z; Guo X; Guo B; Wu B
    Genet Epidemiol; 2019 Dec; 43(8):941-951. PubMed ID: 31392781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Powerful and Adaptive Testing for Multi-trait and Multi-SNP Associations with GWAS and Sequencing Data.
    Kim J; Zhang Y; Pan W;
    Genetics; 2016 Jun; 203(2):715-31. PubMed ID: 27075728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination test for detection of gene-environment interaction in cohort studies.
    Coombes B; Basu S; McGue M
    Genet Epidemiol; 2017 Jul; 41(5):396-412. PubMed ID: 28370330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified powerful set-based test for sequencing data analysis of GxE interactions.
    Su YR; Di CZ; Hsu L;
    Biostatistics; 2017 Jan; 18(1):119-131. PubMed ID: 27474101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.