These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30263366)

  • 1. Effects of emulsifier charges on the oxidative stability in oil-in-water emulsions under riboflavin photosensitization.
    Yi B; Kim MJ; Lee J
    Food Sci Biotechnol; 2016; 25(4):1003-1009. PubMed ID: 30263366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant Properties of Astaxanthin in Oil-in-Water Emulsions with Differently-Charged Emulsifiers Under Chlorophyll Photosensitization.
    Yi B; Kim MJ; Lee J
    J Food Sci; 2018 Mar; 83(3):589-596. PubMed ID: 29412454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stability of oil-in-water emulsions with α-tocopherol, charged emulsifier, and different oxidative stress.
    Yi B; Kim MJ; Lee J
    Food Sci Biotechnol; 2018 Dec; 27(6):1571-1578. PubMed ID: 30483420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative Stability in Oil-in-Water Emulsions with Quercetin or Rutin Under Iron Catalysis or Riboflavin Photosensitization.
    Yi B; Ka H; Kwon Y; Choi H; Kim S; Kim J; Kim MJ; Lee J
    J Food Sci; 2017 Apr; 82(4):890-896. PubMed ID: 28295328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of bisphenol A (BPA) in oil-in water emulsions under riboflavin photosensitization.
    Jang EY; Park CU; Kim MJ; Lee J
    J Food Sci; 2012 Aug; 77(8):C844-8. PubMed ID: 22747968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of metal chelator, sodium azide, and superoxide dismutase on the oxidative stability in riboflavin-photosensitized oil-in-water emulsion systems.
    Lee J; Decker EA
    J Agric Food Chem; 2011 Jun; 59(11):6271-6. PubMed ID: 21542578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of aqueous phase emulsifiers on lipid oxidation in water-in-walnut oil emulsions.
    Yi J; Zhu Z; McClements DJ; Decker EA
    J Agric Food Chem; 2014 Mar; 62(9):2104-11. PubMed ID: 24446832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of δ-Tocopherol in Inhibiting Lipid Oxidation in Emulsions: Effects of Surfactant Charge and of Surfactant Concentration.
    Martínez-Senra T; Losada-Barreiro S; Bravo-Díaz C
    Antioxidants (Basel); 2023 May; 12(6):. PubMed ID: 37371888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Emulsifier Type, Maltodextrin, and β-Cyclodextrin on Physical and Oxidative Stability of Oil-In-Water Emulsions.
    Kibici D; Kahveci D
    J Food Sci; 2019 Jun; 84(6):1273-1280. PubMed ID: 31059587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes.
    Surh J; Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of interfacial rheological properties of mixed emulsifier films on the stability of water-in-oil-in-water emulsions.
    Opawale FO; Burgess DJ
    J Pharm Pharmacol; 1998 Sep; 50(9):965-73. PubMed ID: 9811156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Antioxidant or Prooxidant Properties of Selected Amino Acids Using In Vitro Assays and in Oil-in-Water Emulsions Under Riboflavin Sensitization.
    Ka H; Yi B; Kim MJ; Lee J
    J Food Sci; 2016 May; 81(5):C1118-23. PubMed ID: 27095610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the emulsifier type on the physicochemical stability and in vitro digestibility of a lutein/zeaxanthin-enriched emulsion.
    Jeong SJ; Kim S; Echeverria-Jaramillo E; Shin WS
    Food Sci Biotechnol; 2021 Nov; 30(12):1509-1518. PubMed ID: 34868700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust Switchable Oil-In-Water Emulsion Stabilized by Electrostatic Repulsions between Surfactant and Similarly Charged Carbon Dots.
    Abbas A; Zhang C; Hussain S; Li Y; Gao R; Li J; Liu X; Zhang M; Xu S
    Small; 2023 Mar; 19(11):e2206621. PubMed ID: 36581561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prooxidative and antioxidative properties of β-carotene in chlorophyll and riboflavin photosensitized oil-in-water emulsions.
    Park J; Kim TS; Kim MJ; Lee J
    Food Chem; 2013 Sep; 140(1-2):255-61. PubMed ID: 23578641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of aqueous phase composition and hydrophilic emulsifier type on the stability of W/O/W emulsions.
    Chevalier RC; Gomes A; Cunha RL
    Food Res Int; 2022 Jun; 156():111123. PubMed ID: 35651003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of salts on oxidative stability of lipids in Tween-20 stabilized oil-in-water emulsions.
    Cui L; Cho HT; McClements DJ; Decker EA; Park Y
    Food Chem; 2016 Apr; 197 Pt B():1130-5. PubMed ID: 26675849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The partitioning of emulsifiers in o/w emulsions: a comparative study of SANS, ultrafiltration and dialysis.
    Oehlke K; Garamus VM; Heins A; Stöckmann H; Schwarz K
    J Colloid Interface Sci; 2008 Jun; 322(1):294-303. PubMed ID: 18359038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-induced Coalescence of Droplets Manipulated by Optical Trapping in an Oil-in-Water Emulsion.
    Mitsunobu M; Kobayashi S; Takeyasu N; Kaneta T
    Anal Sci; 2017; 33(6):709-713. PubMed ID: 28603190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-in-oil-in-water double emulsions loaded with chlorogenic acid: release mechanisms and oxidative stability.
    Dima C; Dima S
    J Microencapsul; 2018 Sep; 35(6):584-599. PubMed ID: 30557070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.