These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30263383)

  • 1. A
    Feng Y; Chen W; Chen F
    Food Sci Biotechnol; 2016; 25(4):1115-1122. PubMed ID: 30263383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening and identification of Monascus strains with high-yield monacolin K and undetectable citrinin by integration of HPLC analysis and pksCT and ctnA genes amplification.
    Li Z; Liu Y; Li Y; Lin F; Wu L
    J Appl Microbiol; 2020 Nov; 129(5):1410-1418. PubMed ID: 32357272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the high-yield monacolin K strain from Monascus spp. and its submerged fermentation using different medicinal plants.
    Chen YP; Wu HT; Hwang IE; Chen FF; Yao JY; Yin Y; Chen MY; Liaw LL; Kuo YC
    Bot Stud; 2022 Jul; 63(1):20. PubMed ID: 35779152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the distribution of citrinin biosynthesis related genes among Monascus species.
    Chen YP; Tseng CP; Chien IL; Wang WY; Liaw LL; Yuan GF
    J Agric Food Chem; 2008 Dec; 56(24):11767-72. PubMed ID: 19012408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deleting the citrinin biosynthesis-related gene, ctnE, to greatly reduce citrinin production in Monascus aurantiacus Li AS3.4384.
    Ning ZQ; Cui H; Xu Y; Huang ZB; Tu Z; Li YP
    Int J Food Microbiol; 2017 Jan; 241():325-330. PubMed ID: 27838517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin.
    Chen F; Hu X
    Int J Food Microbiol; 2005 Sep; 103(3):331-7. PubMed ID: 15913821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex metabolic pathway engineering of Monascus pilosus enhances lovastatin production.
    Hong X; Guo T; Xu X; Lin J
    Appl Microbiol Biotechnol; 2023 Nov; 107(21):6541-6552. PubMed ID: 37672068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of Monacolin K in
    Dai W; Shao Y; Chen F
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33918292
    [No Abstract]   [Full Text] [Related]  

  • 9. Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU 568 under dioscorea medium through the mediation of pH value and ethanol addition.
    Lee CL; Hung HK; Wang JJ; Pan TM
    J Agric Food Chem; 2007 Aug; 55(16):6493-502. PubMed ID: 17636932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of monacolin K, yellow pigments, and citrinin production capabilities of Monascus purpureus and Monascus ruber (Monascus pilosus).
    Lin TS; Chiu SH; Chen CC; Lin CH
    J Food Drug Anal; 2023 Mar; 31(1):85-94. PubMed ID: 37224553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monascus spp. and citrinin: Identification, selection of Monascus spp. isolates, occurrence, detection and reduction of citrinin during the fermentation of red fermented rice.
    Farawahida AH; Palmer J; Flint S
    Int J Food Microbiol; 2022 Oct; 379():109829. PubMed ID: 35863149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of monacolin K-enriched ganghwayakssuk (Artemisia princeps Pamp.) by fermentation with Monascus pilosus.
    Lee DS; Lee I
    J Microbiol Biotechnol; 2012 Jul; 22(7):975-80. PubMed ID: 22580317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical optimization for Monacolin K and yellow pigment production and citrinin reduction by Monascus purpureus in solid-state fermentation.
    Jirasatid S; Nopharatana M; Kitsubun P; Vichitsoonthonkul T; Tongta A
    J Microbiol Biotechnol; 2013 Mar; 23(3):364-74. PubMed ID: 23462010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of mutation in Monascus purpureus isolated from Thai fermented food to develop low citrinin-producing strain for application in the red koji industry.
    Ketkaeo S; Sanpamongkolchai W; Morakul S; Baba S; Kobayashi G; Goto M
    J Gen Appl Microbiol; 2020 Aug; 66(3):163-168. PubMed ID: 31462600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red pigment production.
    Fu G; Xu Y; Li Y; Tan W
    Asia Pac J Clin Nutr; 2007; 16 Suppl 1():137-42. PubMed ID: 17392092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture.
    Wang JJ; Lee CL; Pan TM
    J Agric Food Chem; 2004 Nov; 52(23):6977-82. PubMed ID: 15537306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orf6 gene encoded glyoxalase involved in mycotoxin citrinin biosynthesis in Monascus purpureus YY-1.
    Liang B; Du X; Li P; Guo H; Sun C; Gao J; Wang S
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7281-7292. PubMed ID: 28831532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of citrinin and monacolin K gene clusters variation among pigment producer Monascus species.
    Liu A; Juan Chen A; Liu B; Wei Q; Bai J; Hu Y
    Fungal Genet Biol; 2022 May; 160():103687. PubMed ID: 35315337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NaCl Inhibits Citrinin and Stimulates
    Zhen Z; Xiong X; Liu Y; Zhang J; Wang S; Li L; Gao M
    Toxins (Basel); 2019 Feb; 11(2):. PubMed ID: 30769930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of monacolin K, gamma-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601.
    Wang JJ; Lee CL; Pan TM
    J Ind Microbiol Biotechnol; 2003 Nov; 30(11):669-76. PubMed ID: 14625794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.