BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30263406)

  • 1. Effect of 2,2-azobis (2-amidinopropane) dihydrochloride oxidized casein on the microstructure and microrheology properties of emulsions.
    Wang J; Tan Y; Xu H; Niu S; Yu J
    Food Sci Biotechnol; 2016; 25(5):1283-1290. PubMed ID: 30263406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of protein oxidation on kinetics of droplets stability probed by microrheology in O/W and W/O emulsions of whey protein concentrate.
    Tan Y; Wang J; Chen F; Niu S; Yu J
    Food Res Int; 2016 Jul; 85():259-265. PubMed ID: 29544842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing physicochemical properties of emulsions by heteroaggregation of oppositely charged lactoferrin coated lutein droplets and whey protein isolate coated DHA droplets.
    Li X; Wang X; Xu D; Cao Y; Wang S; Wang B; Sun B; Yuan F; Gao Y
    Food Chem; 2018 Jan; 239():75-85. PubMed ID: 28873631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure.
    Zúñiga RN; Skurtys O; Osorio F; Aguilera JM; Pedreschi F
    Carbohydr Polym; 2012 Oct; 90(2):1147-58. PubMed ID: 22840052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Alkyl Peroxyl Radical Oxidation on the Oxidative Stability of Walnut Protein Emulsions and Their Adsorbed Proteins.
    Wang X; Wu Q; Mao X; Zhang J
    Foods; 2024 May; 13(10):. PubMed ID: 38790813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of droplet size on the oxidative stability of soybean oil TAG and fish oil TAG in oil-in-water emulsion.
    Azuma G; Kimura N; Hosokawa M; Miyashita K
    J Oleo Sci; 2009; 58(6):329-38. PubMed ID: 19430195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of milk protein composition on physicochemical properties, creaming stability and volatile profile of a protein-stabilised oil-in-water emulsion.
    Loi CC; Eyres GT; Birch EJ
    Food Res Int; 2019 Jun; 120():83-91. PubMed ID: 31000304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Flow Cytometry As Novel Technology in Studying the Effect of Droplet Size on Lipid Oxidation in Oil-in-Water Emulsions.
    Li P; McClements DJ; Decker EA
    J Agric Food Chem; 2020 Jan; 68(2):567-573. PubMed ID: 31860290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose-stabilized oil-in-water emulsions: Structural features, microrheology, and stability.
    Costa C; Rosa P; Filipe A; Medronho B; Romano A; Liberman L; Talmon Y; Norgren M
    Carbohydr Polym; 2021 Jan; 252():117092. PubMed ID: 33183583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate.
    Hu M; McClements DJ; Decker EA
    J Agric Food Chem; 2003 Mar; 51(6):1696-700. PubMed ID: 12617607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of calcium-induced droplet heteroaggregation on the physicochemical properties of oppositely charged lactoferrin coated lutein droplets and whey protein isolate-coated DHA droplets.
    Li X; Wang X; Xu D; Cao Y; Wang S; Wang B; Wang C; Sun B
    Food Funct; 2017 Aug; 8(8):2748-2759. PubMed ID: 28702650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics.
    van der Ven C; Gruppen H; de Bont DB; Voragen AG
    J Agric Food Chem; 2001 Oct; 49(10):5005-12. PubMed ID: 11600059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microrheology of novel cellulose stabilized oil-in-water emulsions.
    Medronho B; Filipe A; Costa C; Romano A; Lindman B; Edlund H; Norgren M
    J Colloid Interface Sci; 2018 Dec; 531():225-232. PubMed ID: 30032009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Emulsifier Type, Maltodextrin, and β-Cyclodextrin on Physical and Oxidative Stability of Oil-In-Water Emulsions.
    Kibici D; Kahveci D
    J Food Sci; 2019 Jun; 84(6):1273-1280. PubMed ID: 31059587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of Physicochemical Properties by Heteroaggregation of Oppositely Charged Lactoferrin and Soybean Protein Isolate Coated DHA Emulsion Droplets.
    Liu J; Xu D; Cao Y; Wang B; Wang S; Sun B
    J Agric Food Chem; 2018 Nov; 66(46):12306-12315. PubMed ID: 30346753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Incorporation of Multiwalled Carbon Nanotubes on the Microstructure and Flow Behavior of Highly Concentrated Emulsions.
    Bhagavathi Kandy S; Simon GP; Cheng W; Zank J; Joshi K; Gala D; Bhattacharyya AR
    ACS Omega; 2018 Oct; 3(10):13584-13597. PubMed ID: 31458064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation by high power ultrasound of aggregated emulsions stabilised with milk protein concentrate (MPC70).
    Zhang R; Luo L; Yang Z; Ashokkumar M; Hemar Y
    Ultrason Sonochem; 2021 Dec; 81():105852. PubMed ID: 34875554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate.
    Sato ACK; Perrechil FA; Costa AAS; Santana RC; Cunha RL
    Food Res Int; 2015 Sep; 75():244-251. PubMed ID: 28454953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet-Stabilized Oil-in-Water Emulsions Protect Unsaturated Lipids from Oxidation.
    Okubanjo SS; Loveday SM; Ye A; Wilde PJ; Singh H
    J Agric Food Chem; 2019 Mar; 67(9):2626-2636. PubMed ID: 30608676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological behaviors of Pickering emulsions stabilized by TEMPO-oxidized bacterial cellulose.
    Jia Y; Zheng M; Xu Q; Zhong C
    Carbohydr Polym; 2019 Jul; 215():263-271. PubMed ID: 30981353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.