These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30263658)

  • 21. Integrating a Low-Cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity.
    Gonzalez Viejo C; Tongson E; Fuentes S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility study on chemometric discrimination of roasted Arabica coffees by solvent extraction and Fourier transform infrared spectroscopy.
    Wang N; Fu Y; Lim LT
    J Agric Food Chem; 2011 Apr; 59(7):3220-6. PubMed ID: 21381653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Species discrimination among three kinds of puffer fish using an electronic nose combined with olfactory sensory evaluation.
    Zhang M; Wang X; Liu Y; Xu X; Zhou G
    Sensors (Basel); 2012; 12(9):12562-71. PubMed ID: 23112731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): chemometric evaluation of phenolic and methylxanthine contents.
    Alonso-Salces RM; Serra F; Reniero F; Héberger K
    J Agric Food Chem; 2009 May; 57(10):4224-35. PubMed ID: 19298065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining electronic tongue array and chemometrics for discriminating the specific geographical origins of green tea.
    Xu L; Yan SM; Ye ZH; Fu XS; Yu XP
    J Anal Methods Chem; 2013; 2013():350801. PubMed ID: 23956928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltammetric electronic tongue and support vector machines for identification of selected features in Mexican coffee.
    Domínguez RB; Moreno-Barón L; Muñoz R; Gutiérrez JM
    Sensors (Basel); 2014 Sep; 14(9):17770-85. PubMed ID: 25254303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of PCA-MLP Model Based on Visible and Shortwave Near Infrared Spectroscopy for Authenticating Arabica Coffee Origins.
    Dharmawan A; Masithoh RE; Amanah HZ
    Foods; 2023 May; 12(11):. PubMed ID: 37297358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the geographical origin of green coffee by principal component analysis of carbon, nitrogen and boron stable isotope ratios.
    Serra F; Guillou CG; Reniero F; Ballarin L; Cantagallo MI; Wieser M; Iyer SS; Héberger K; Vanhaecke F
    Rapid Commun Mass Spectrom; 2005; 19(15):2111-5. PubMed ID: 15988730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Arabica and Robusta Coffees by Ion Mobility Sum Spectrum.
    Piotr Konieczka P; Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of E-tongue, E-nose, and MS-E-nose for discriminating aged vinegars based on taste and aroma profiles.
    Jo Y; Chung N; Park SW; Noh BS; Jeong YJ; Kwon JH
    Food Sci Biotechnol; 2016; 25(5):1313-1318. PubMed ID: 30263410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of specialty coffee flavors based on near-infrared spectra using machine- and deep-learning methods.
    Chang YT; Hsueh MC; Hung SP; Lu JM; Peng JH; Chen SF
    J Sci Food Agric; 2021 Aug; 101(11):4705-4714. PubMed ID: 33491774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discrimination of Chinese green tea according to varieties and grade levels using artificial nose and tongue based on colorimetric sensor arrays.
    Huo D; Wu Y; Yang M; Fa H; Luo X; Hou C
    Food Chem; 2014 Feb; 145():639-45. PubMed ID: 24128526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the role of (-)-2-methylisoborneol for the aroma of Robusta coffee.
    Blank I; Grosch W
    J Agric Food Chem; 2002 Jul; 50(16):4653-6. PubMed ID: 12137492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of key aroma development in coffees roasted to different degrees by colorimetric sensor array.
    Kim SY; Ko JA; Kang BS; Park HJ
    Food Chem; 2018 Feb; 240():808-816. PubMed ID: 28946345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial Q-Grader: Machine Learning-Enabled Intelligent Olfactory and Gustatory Sensing System.
    Jang M; Bae G; Kwon YM; Cho JH; Lee DH; Kang S; Yim S; Myung S; Lim J; Lee SS; Song W; An KS
    Adv Sci (Weinh); 2024 Jun; 11(23):e2308976. PubMed ID: 38582529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discrimination and characterization of different intensities of goaty flavor in goat milk by means of an electronic nose.
    Yang CJ; Ding W; Ma LJ; Jia R
    J Dairy Sci; 2015 Jan; 98(1):55-67. PubMed ID: 25465555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensory Analysis of Full Immersion Coffee: Cold Brew Is More Floral, and Less Bitter, Sour, and Rubbery Than Hot Brew.
    Batali ME; Lim LX; Liang J; Yeager SE; Thompson AN; Han J; Ristenpart WD; Guinard JX
    Foods; 2022 Aug; 11(16):. PubMed ID: 36010440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of the geographical origin of
    Wu Z; Ye X; Bian F; Yu G; Gao G; Ou J; Wang Y; Li Y; Du X
    Heliyon; 2022 Oct; 8(10):e10801. PubMed ID: 36203902
    [No Abstract]   [Full Text] [Related]  

  • 39. GIS-based multi-criteria analysis for Arabica coffee expansion in Rwanda.
    Nzeyimana I; Hartemink AE; Geissen V
    PLoS One; 2014; 9(10):e107449. PubMed ID: 25299459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of Sensory Evaluation, HS-SPME GC-MS, E-Nose, and E-Tongue for Quality Detection in Citrus Fruits.
    Qiu S; Wang J
    J Food Sci; 2015 Oct; 80(10):S2296-304. PubMed ID: 26416698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.