These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30264229)

  • 41. Speech perception, localization, and lateralization with bilateral cochlear implants.
    van Hoesel RJ; Tyler RS
    J Acoust Soc Am; 2003 Mar; 113(3):1617-30. PubMed ID: 12656396
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unilateral spectral and temporal compression reduces binaural fusion for normal hearing listeners with cochlear implant simulations.
    Aronoff JM; Shayman C; Prasad A; Suneel D; Stelmach J
    Hear Res; 2015 Feb; 320():24-9. PubMed ID: 25549574
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Benefits of bilateral electrical stimulation with the nucleus cochlear implant in adults: 6-month postoperative results.
    Laszig R; Aschendorff A; Stecker M; Müller-Deile J; Maune S; Dillier N; Weber B; Hey M; Begall K; Lenarz T; Battmer RD; Böhm M; Steffens T; Strutz J; Linder T; Probst R; Allum J; Westhofen M; Doering W
    Otol Neurotol; 2004 Nov; 25(6):958-68. PubMed ID: 15547426
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitivity to binaural temporal-envelope beats with single-sided deafness and a cochlear implant as a measure of tonotopic match (L).
    Dirks CE; Nelson PB; Winn MB; Oxenham AJ
    J Acoust Soc Am; 2020 May; 147(5):3626. PubMed ID: 32486770
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chronic Bilateral Cochlear Implant Stimulation Partially Restores Neural Binaural Sensitivity in Neonatally-Deaf Rabbits.
    Sunwoo W; Delgutte B; Chung Y
    J Neurosci; 2021 Apr; 41(16):3651-3664. PubMed ID: 33687960
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Binaural Pitch Fusion: Binaural Pitch Averaging in Cochlear Implant Users With Broad Binaural Fusion.
    Oh Y; Reiss LAJ
    Ear Hear; 2020; 41(6):1450-1460. PubMed ID: 33136622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Binaural sensitivity in children who use bilateral cochlear implants.
    Ehlers E; Goupell MJ; Zheng Y; Godar SP; Litovsky RY
    J Acoust Soc Am; 2017 Jun; 141(6):4264. PubMed ID: 28618809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mixed stimulation rates to improve sensitivity of interaural timing differences in bilateral cochlear implant listeners.
    Thakkar T; Kan A; Jones HG; Litovsky RY
    J Acoust Soc Am; 2018 Mar; 143(3):1428. PubMed ID: 29604701
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of channel separation and interaural mismatch on fusion and lateralization in normal-hearing and cochlear-implant listeners.
    Kan A; Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2019 Aug; 146(2):1448. PubMed ID: 31472555
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Having Two Ears Facilitates the Perceptual Separation of Concurrent Talkers for Bilateral and Single-Sided Deaf Cochlear Implantees.
    Bernstein JG; Goupell MJ; Schuchman GI; Rivera AL; Brungart DS
    Ear Hear; 2016; 37(3):289-302. PubMed ID: 26886027
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates.
    Laback B; Majdak P
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):814-7. PubMed ID: 18182489
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensitivity to interaural time differences in the inferior colliculus of cochlear implanted rats with or without hearing experience.
    Buck AN; Rosskothen-Kuhl N; Schnupp JW
    Hear Res; 2021 Sep; 408():108305. PubMed ID: 34315027
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Perception and coding of interaural time differences with bilateral cochlear implants.
    Laback B; Egger K; Majdak P
    Hear Res; 2015 Apr; 322():138-50. PubMed ID: 25456088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants.
    Smith ZM; Delgutte B
    J Neurosci; 2007 Jun; 27(25):6740-50. PubMed ID: 17581961
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binaural fusion and listening effort in children who use bilateral cochlear implants: a psychoacoustic and pupillometric study.
    Steel MM; Papsin BC; Gordon KA
    PLoS One; 2015; 10(2):e0117611. PubMed ID: 25668423
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaural time processing when stimulus bandwidth differs at the two ears.
    Brown CA; Yost WA
    Adv Exp Med Biol; 2013; 787():247-54. PubMed ID: 23716230
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of interaural differences in envelope shape on the perceived location of sounds (L).
    Francart T; Lenssen A; Wouters J
    J Acoust Soc Am; 2012 Aug; 132(2):611-4. PubMed ID: 22894182
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lateralization of Interaural Level Differences with Multiple Electrode Stimulation in Bilateral Cochlear-Implant Listeners.
    Stakhovskaya OA; Goupell MJ
    Ear Hear; 2017; 38(1):e22-e38. PubMed ID: 27579987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sensitivity to interaural time differences and localization accuracy in cochlear implant users with combined electric-acoustic stimulation.
    Körtje M; Baumann U; Stöver T; Weissgerber T
    PLoS One; 2020; 15(10):e0241015. PubMed ID: 33075114
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of rate and age in processing interaural time and level differences in normal-hearing and bilateral cochlear-implant listeners.
    Anderson SR; Easter K; Goupell MJ
    J Acoust Soc Am; 2019 Nov; 146(5):3232. PubMed ID: 31795662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.