These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 30264343)
1. Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite. Van Dexter S; Boopathy R Environ Sci Pollut Res Int; 2019 Nov; 26(33):34067-34072. PubMed ID: 30264343 [TBL] [Abstract][Full Text] [Related]
2. Carbon ecology of termite gut and phenol degradation by a bacterium isolated from the gut of termite. Van Dexter S; Oubre C; Boopathy R J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1265-1271. PubMed ID: 31053982 [TBL] [Abstract][Full Text] [Related]
3. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis. Tsegaye B; Balomajumder C; Roy P Int Microbiol; 2019 Mar; 22(1):29-39. PubMed ID: 30810928 [TBL] [Abstract][Full Text] [Related]
4. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Warnecke F; Luginbühl P; Ivanova N; Ghassemian M; Richardson TH; Stege JT; Cayouette M; McHardy AC; Djordjevic G; Aboushadi N; Sorek R; Tringe SG; Podar M; Martin HG; Kunin V; Dalevi D; Madejska J; Kirton E; Platt D; Szeto E; Salamov A; Barry K; Mikhailova N; Kyrpides NC; Matson EG; Ottesen EA; Zhang X; Hernández M; Murillo C; Acosta LG; Rigoutsos I; Tamayo G; Green BD; Chang C; Rubin EM; Mathur EJ; Robertson DE; Hugenholtz P; Leadbetter JR Nature; 2007 Nov; 450(7169):560-5. PubMed ID: 18033299 [TBL] [Abstract][Full Text] [Related]
5. The complexities of hydrolytic enzymes from the termite digestive system. Saadeddin A Crit Rev Biotechnol; 2014 Jun; 34(2):115-22. PubMed ID: 23036053 [TBL] [Abstract][Full Text] [Related]
6. Development of novel method for screening microorganisms using symbiotic association between insect (Coptotermes formosanus Shiraki) and intestinal microorganisms. Hayashi A; Aoyagi H; Yoshimura T; Tanaka H J Biosci Bioeng; 2007 Apr; 103(4):358-67. PubMed ID: 17502278 [TBL] [Abstract][Full Text] [Related]
7. Wood‑feeding termites as an obscure yet promising source of bacteria for biodegradation and detoxification of creosote-treated wood along with methane production enhancement. Ali SS; Mustafa AM; Sun J Bioresour Technol; 2021 Oct; 338():125521. PubMed ID: 34273631 [TBL] [Abstract][Full Text] [Related]
9. The cellulolytic system of the termite gut. König H; Li L; Fröhlich J Appl Microbiol Biotechnol; 2013 Sep; 97(18):7943-62. PubMed ID: 23900801 [TBL] [Abstract][Full Text] [Related]
10. Challenges and physiological implications of wood feeding in termites. Scharf ME Curr Opin Insect Sci; 2020 Oct; 41():79-85. PubMed ID: 32823202 [TBL] [Abstract][Full Text] [Related]
11. Symbiotic digestion of lignocellulose in termite guts. Brune A Nat Rev Microbiol; 2014 Mar; 12(3):168-80. PubMed ID: 24487819 [TBL] [Abstract][Full Text] [Related]
12. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Yuki M; Kuwahara H; Shintani M; Izawa K; Sato T; Starns D; Hongoh Y; Ohkuma M Environ Microbiol; 2015 Dec; 17(12):4942-53. PubMed ID: 26079531 [TBL] [Abstract][Full Text] [Related]
13. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area. Wong WZ; H'ng PS; Chin KL; Sajap AS; Tan GH; Paridah MT; Othman S; Chai EW; Go WZ Environ Entomol; 2015 Oct; 44(5):1367-74. PubMed ID: 26314017 [TBL] [Abstract][Full Text] [Related]
14. [Culture and biodegradation performance for phenol-degrading bacterium in high phenol concentration]. Lü RH; Fu Q Huan Jing Ke Xue; 2005 Sep; 26(5):147-51. PubMed ID: 16366488 [TBL] [Abstract][Full Text] [Related]
15. Exploring the region-wise diversity and functions of symbiotic bacteria in the gut system of wood-feeding termite, Coptotermes formosanus, toward the degradation of cellulose, hemicellulose, and organic dyes. Dar MA; Xie R; Pandit RS; Danso B; Dong C; Sun J Insect Sci; 2022 Oct; 29(5):1414-1432. PubMed ID: 35134272 [TBL] [Abstract][Full Text] [Related]
16. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. Marynowska M; Goux X; Sillam-Dussès D; Rouland-Lefèvre C; Roisin Y; Delfosse P; Calusinska M BMC Genomics; 2017 Sep; 18(1):681. PubMed ID: 28863779 [TBL] [Abstract][Full Text] [Related]
17. [Characteristics of 4-chlorophenol degradation by a soil bacterium Acinetobacter sp]. Wu WZ; Feng YC; Wang JL Huan Jing Ke Xue; 2008 Nov; 29(11):3185-8. PubMed ID: 19186825 [TBL] [Abstract][Full Text] [Related]
18. Biodegradation of willow sawdust by novel cellulase-producing bacterial consortium from wood-feeding termites for enhancing methane production. Ali SS; Jiao H; El-Sapagh S; Sun J Bioresour Technol; 2023 Sep; 383():129232. PubMed ID: 37244303 [TBL] [Abstract][Full Text] [Related]
19. Diversity, Roles, and Biotechnological Applications of Symbiotic Microorganisms in the Gut of Termite. Zhou J; Duan J; Gao M; Wang Y; Wang X; Zhao K Curr Microbiol; 2019 Jun; 76(6):755-761. PubMed ID: 29754180 [TBL] [Abstract][Full Text] [Related]
20. Biotechnological tools to improve bioremediation of phenol by Acinetobacter sp. RTE1.4. Paisio CE; Talano MA; González PS; Magallanes-Noguera C; Kurina-Sanz M; Agostini E Environ Technol; 2016 Sep; 37(18):2379-90. PubMed ID: 26853946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]