BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

979 related articles for article (PubMed ID: 30264354)

  • 21. Gut microbiota and host metabolism in liver cirrhosis.
    Usami M; Miyoshi M; Yamashita H
    World J Gastroenterol; 2015 Nov; 21(41):11597-608. PubMed ID: 26556989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Gut microbiota and immune crosstalk in metabolic disease].
    Burcelin R
    Biol Aujourdhui; 2017; 211(1):1-18. PubMed ID: 28682223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gut Microbiota-Derived Short Chain Fatty Acids Induce Circadian Clock Entrainment in Mouse Peripheral Tissue.
    Tahara Y; Yamazaki M; Sukigara H; Motohashi H; Sasaki H; Miyakawa H; Haraguchi A; Ikeda Y; Fukuda S; Shibata S
    Sci Rep; 2018 Jan; 8(1):1395. PubMed ID: 29362450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients.
    Shortt C; Hasselwander O; Meynier A; Nauta A; Fernández EN; Putz P; Rowland I; Swann J; Türk J; Vermeiren J; Antoine JM
    Eur J Nutr; 2018 Feb; 57(1):25-49. PubMed ID: 29086061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre.
    Salamone D; Rivellese AA; Vetrani C
    Acta Diabetol; 2021 Sep; 58(9):1131-1138. PubMed ID: 33970303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections.
    Serino M
    J Mol Biol; 2018 Mar; 430(5):581-590. PubMed ID: 29374557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview.
    Shang Q; Jiang H; Cai C; Hao J; Li G; Yu G
    Carbohydr Polym; 2018 Jan; 179():173-185. PubMed ID: 29111040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic endotoxemia and cardiovascular disease: A systematic review about potential roles of prebiotics and probiotics.
    Moludi J; Maleki V; Jafari-Vayghyan H; Vaghef-Mehrabany E; Alizadeh M
    Clin Exp Pharmacol Physiol; 2020 Jun; 47(6):927-939. PubMed ID: 31894861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Role of the Gut Microbiota in Bile Acid Metabolism.
    Ramírez-Pérez O; Cruz-Ramón V; Chinchilla-López P; Méndez-Sánchez N
    Ann Hepatol; 2017 Nov; 16(Suppl. 1: s3-105.):s15-s20. PubMed ID: 29080339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease.
    Sanduzzi Zamparelli M; Compare D; Coccoli P; Rocco A; Nardone OM; Marrone G; Gasbarrini A; Grieco A; Nardone G; Miele L
    Int J Mol Sci; 2016 Jul; 17(8):. PubMed ID: 27483246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis.
    Machate DJ; Figueiredo PS; Marcelino G; Guimarães RCA; Hiane PA; Bogo D; Pinheiro VAZ; Oliveira LCS; Pott A
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32521778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metatranscriptome analysis of the microbial fermentation of dietary milk proteins in the murine gut.
    Hugenholtz F; Davids M; Schwarz J; Müller M; Tomé D; Schaap P; Hooiveld GJEJ; Smidt H; Kleerebezem M
    PLoS One; 2018; 13(4):e0194066. PubMed ID: 29664912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course?
    Barrea L; Muscogiuri G; Annunziata G; Laudisio D; Pugliese G; Salzano C; Colao A; Savastano S
    Hormones (Athens); 2019 Sep; 18(3):245-250. PubMed ID: 30840230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dietary Patterns Affect the Gut Microbiome-The Link to Risk of Cardiometabolic Diseases.
    Tindall AM; Petersen KS; Kris-Etherton PM
    J Nutr; 2018 Sep; 148(9):1402-1407. PubMed ID: 30184227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding connections and roles of gut microbiome in cardiovascular diseases.
    Rajendiran E; Ramadass B; Ramprasath V
    Can J Microbiol; 2021 Feb; 67(2):101-111. PubMed ID: 33079568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome].
    Halmos T; Suba I
    Orv Hetil; 2016 Jan; 157(1):13-22. PubMed ID: 26708682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex.
    Rizzetto L; Fava F; Tuohy KM; Selmi C
    J Autoimmun; 2018 Aug; 92():12-34. PubMed ID: 29861127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: mechanisms and implications for metabolic disorders.
    Musso G; Gambino R; Cassader M
    Curr Opin Lipidol; 2010 Feb; 21(1):76-83. PubMed ID: 19915460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dietary metabolism, the gut microbiome, and heart failure.
    Tang WHW; Li DY; Hazen SL
    Nat Rev Cardiol; 2019 Mar; 16(3):137-154. PubMed ID: 30410105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases.
    Schiattarella GG; Sannino A; Esposito G; Perrino C
    Trends Cardiovasc Med; 2019 Apr; 29(3):141-147. PubMed ID: 30126689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 49.