These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 3026441)

  • 1. Effect of Al3+ plus F- on the catecholamine-stimulated GTPase activity of purified and reconstituted Gs.
    Brandt DR; Ross EM
    Biochemistry; 1986 Nov; 25(22):7036-41. PubMed ID: 3026441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-nucleotide intermediates.
    Brandt DR; Ross EM
    J Biol Chem; 1985 Jan; 260(1):266-72. PubMed ID: 2981206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by beta-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles.
    Brandt DR; Ross EM
    J Biol Chem; 1986 Feb; 261(4):1656-64. PubMed ID: 2868003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of catecholamine-stimulated binding of guanosine 5'-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase.
    Asano T; Pedersen SE; Scott CW; Ross EM
    Biochemistry; 1984 Nov; 23(23):5460-7. PubMed ID: 6095899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catecholamine-stimulated guanosine 5'-O-(3-thiotriphosphate) binding to the stimulatory GTP-binding protein of adenylate cyclase: kinetic analysis in reconstituted phospholipid vesicles.
    Asano T; Ross EM
    Biochemistry; 1984 Nov; 23(23):5467-71. PubMed ID: 6095900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity.
    Brandt DR; Asano T; Pedersen SE; Ross EM
    Biochemistry; 1983 Sep; 22(19):4357-62. PubMed ID: 6138091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by beta-adrenergic receptors in reconstituted phospholipid vesicles.
    Asano T; Katada T; Gilman AG; Ross EM
    J Biol Chem; 1984 Aug; 259(15):9351-4. PubMed ID: 6146612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional activation of beta-adrenergic receptors by thiols in the presence or absence of agonists.
    Pedersen SE; Ross EM
    J Biol Chem; 1985 Nov; 260(26):14150-7. PubMed ID: 2997196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis in Escherichia coli of GTPase-deficient mutants of Gs alpha.
    Graziano MP; Gilman AG
    J Biol Chem; 1989 Sep; 264(26):15475-82. PubMed ID: 2549065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid binding of guanosine 5'-O-(3-thiotriphosphate) to an apparent complex of beta-adrenergic receptor and the GTP-binding regulatory protein Gs.
    May DC; Ross EM
    Biochemistry; 1988 Jun; 27(13):4888-93. PubMed ID: 2844244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go.
    Higashijima T; Ferguson KM; Smigel MD; Gilman AG
    J Biol Chem; 1987 Jan; 262(2):757-61. PubMed ID: 3027067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of guanosine nucleotide hydrolysis by p21 c-Ha-ras. The stereochemical course of the GTPase reaction.
    Feuerstein J; Goody RS; Webb MR
    J Biol Chem; 1989 Apr; 264(11):6188-90. PubMed ID: 2539374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes.
    Cassel D; Selinger Z
    Biochim Biophys Acta; 1976 Dec; 452(2):538-51. PubMed ID: 188466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum.
    Kanaho Y; Moss J; Vaughan M
    J Biol Chem; 1985 Sep; 260(21):11493-7. PubMed ID: 2995338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton (alpha) subunit.
    Northup JK; Smigel MD; Sternweis PC; Gilman AG
    J Biol Chem; 1983 Sep; 258(18):11369-76. PubMed ID: 6309844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity.
    Higashijima T; Burnier J; Ross EM
    J Biol Chem; 1990 Aug; 265(24):14176-86. PubMed ID: 2117607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydrophobic tryptic core of the beta-adrenergic receptor retains Gs regulatory activity in response to agonists and thiols.
    Rubenstein RC; Wong SK; Ross EM
    J Biol Chem; 1987 Dec; 262(34):16655-62. PubMed ID: 2890639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity of the beta-adrenergic receptor among Gs, Gi's, and Go: assay using recombinant alpha subunits in reconstituted phospholipid vesicles.
    Rubenstein RC; Linder ME; Ross EM
    Biochemistry; 1991 Nov; 30(44):10769-77. PubMed ID: 1657154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of the purified porcine atrial muscarinic acetylcholine receptor with purified porcine atrial inhibitory guanine nucleotide binding protein.
    Tota MR; Kahler KR; Schimerlik MI
    Biochemistry; 1987 Dec; 26(25):8175-82. PubMed ID: 3126798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of phospholipids and ADP-ribosylation on GTP hydrolysis by Escherichia coli-synthesized Ha-ras-encoded p21.
    Tsai SC; Adamik R; Moss J; Vaughan M; Manne V; Kung HF
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8310-4. PubMed ID: 3001695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.