BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3026441)

  • 1. Effect of Al3+ plus F- on the catecholamine-stimulated GTPase activity of purified and reconstituted Gs.
    Brandt DR; Ross EM
    Biochemistry; 1986 Nov; 25(22):7036-41. PubMed ID: 3026441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-nucleotide intermediates.
    Brandt DR; Ross EM
    J Biol Chem; 1985 Jan; 260(1):266-72. PubMed ID: 2981206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by beta-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles.
    Brandt DR; Ross EM
    J Biol Chem; 1986 Feb; 261(4):1656-64. PubMed ID: 2868003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of catecholamine-stimulated binding of guanosine 5'-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase.
    Asano T; Pedersen SE; Scott CW; Ross EM
    Biochemistry; 1984 Nov; 23(23):5460-7. PubMed ID: 6095899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catecholamine-stimulated guanosine 5'-O-(3-thiotriphosphate) binding to the stimulatory GTP-binding protein of adenylate cyclase: kinetic analysis in reconstituted phospholipid vesicles.
    Asano T; Ross EM
    Biochemistry; 1984 Nov; 23(23):5467-71. PubMed ID: 6095900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity.
    Brandt DR; Asano T; Pedersen SE; Ross EM
    Biochemistry; 1983 Sep; 22(19):4357-62. PubMed ID: 6138091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by beta-adrenergic receptors in reconstituted phospholipid vesicles.
    Asano T; Katada T; Gilman AG; Ross EM
    J Biol Chem; 1984 Aug; 259(15):9351-4. PubMed ID: 6146612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional activation of beta-adrenergic receptors by thiols in the presence or absence of agonists.
    Pedersen SE; Ross EM
    J Biol Chem; 1985 Nov; 260(26):14150-7. PubMed ID: 2997196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis in Escherichia coli of GTPase-deficient mutants of Gs alpha.
    Graziano MP; Gilman AG
    J Biol Chem; 1989 Sep; 264(26):15475-82. PubMed ID: 2549065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid binding of guanosine 5'-O-(3-thiotriphosphate) to an apparent complex of beta-adrenergic receptor and the GTP-binding regulatory protein Gs.
    May DC; Ross EM
    Biochemistry; 1988 Jun; 27(13):4888-93. PubMed ID: 2844244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go.
    Higashijima T; Ferguson KM; Smigel MD; Gilman AG
    J Biol Chem; 1987 Jan; 262(2):757-61. PubMed ID: 3027067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of guanosine nucleotide hydrolysis by p21 c-Ha-ras. The stereochemical course of the GTPase reaction.
    Feuerstein J; Goody RS; Webb MR
    J Biol Chem; 1989 Apr; 264(11):6188-90. PubMed ID: 2539374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes.
    Cassel D; Selinger Z
    Biochim Biophys Acta; 1976 Dec; 452(2):538-51. PubMed ID: 188466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum.
    Kanaho Y; Moss J; Vaughan M
    J Biol Chem; 1985 Sep; 260(21):11493-7. PubMed ID: 2995338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton (alpha) subunit.
    Northup JK; Smigel MD; Sternweis PC; Gilman AG
    J Biol Chem; 1983 Sep; 258(18):11369-76. PubMed ID: 6309844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity.
    Higashijima T; Burnier J; Ross EM
    J Biol Chem; 1990 Aug; 265(24):14176-86. PubMed ID: 2117607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydrophobic tryptic core of the beta-adrenergic receptor retains Gs regulatory activity in response to agonists and thiols.
    Rubenstein RC; Wong SK; Ross EM
    J Biol Chem; 1987 Dec; 262(34):16655-62. PubMed ID: 2890639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity of the beta-adrenergic receptor among Gs, Gi's, and Go: assay using recombinant alpha subunits in reconstituted phospholipid vesicles.
    Rubenstein RC; Linder ME; Ross EM
    Biochemistry; 1991 Nov; 30(44):10769-77. PubMed ID: 1657154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of the purified porcine atrial muscarinic acetylcholine receptor with purified porcine atrial inhibitory guanine nucleotide binding protein.
    Tota MR; Kahler KR; Schimerlik MI
    Biochemistry; 1987 Dec; 26(25):8175-82. PubMed ID: 3126798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of phospholipids and ADP-ribosylation on GTP hydrolysis by Escherichia coli-synthesized Ha-ras-encoded p21.
    Tsai SC; Adamik R; Moss J; Vaughan M; Manne V; Kung HF
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8310-4. PubMed ID: 3001695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.