These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 30264451)

  • 1. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T; Khor JM; Ettensohn CA
    Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution.
    Ettensohn CA; Guerrero-Santoro J; Khor JM
    Curr Top Dev Biol; 2022; 146():113-148. PubMed ID: 35152981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genomic regulatory control of skeletal morphogenesis in the sea urchin.
    Rafiq K; Cheers MS; Ettensohn CA
    Development; 2012 Feb; 139(3):579-90. PubMed ID: 22190640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis.
    Ettensohn CA
    Development; 2009 Jan; 136(1):11-21. PubMed ID: 19060330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms.
    Erkenbrack EM; Ako-Asare K; Miller E; Tekelenburg S; Thompson JR; Romano L
    Dev Genes Evol; 2016 Jan; 226(1):37-45. PubMed ID: 26781941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Juvenile skeletogenesis in anciently diverged sea urchin clades.
    Gao F; Thompson JR; Petsios E; Erkenbrack E; Moats RA; Bottjer DJ; Davidson EH
    Dev Biol; 2015 Apr; 400(1):148-58. PubMed ID: 25641694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF; Nguyen AT; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling.
    Shashikant T; Khor JM; Ettensohn CA
    BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H
    Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perspectives on divergence of early developmental regulatory pathways: Insight from the evolution of echinoderm double negative gate.
    Levin N; Yamakawa S; Morino Y; Wada H
    Curr Top Dev Biol; 2022; 146():1-24. PubMed ID: 35152980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification of binding sites and gene targets of Alx1, a pivotal regulator of echinoderm skeletogenesis.
    Khor JM; Guerrero-Santoro J; Ettensohn CA
    Development; 2019 Aug; 146(16):. PubMed ID: 31331943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks.
    Ben-Tabou de-Leon S
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression of embryonic primary mesenchyme genes of the sea urchin, Strongylocentrotus purpuratus, in the adult skeletogenic tissues of this and other species of echinoderms.
    Drager BJ; Harkey MA; Iwata M; Whiteley AH
    Dev Biol; 1989 May; 133(1):14-23. PubMed ID: 2707481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P
    Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.