These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 30264451)
21. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids. Erkenbrack EM; Davidson EH; Peter IS Development; 2018 Dec; 145(24):. PubMed ID: 30470703 [TBL] [Abstract][Full Text] [Related]
22. Echinoderm development and evolution in the post-genomic era. Cary GA; Hinman VF Dev Biol; 2017 Jul; 427(2):203-211. PubMed ID: 28185788 [TBL] [Abstract][Full Text] [Related]
23. The biological regulation of sea urchin larval skeletogenesis - From genes to biomineralized tissue. Gildor T; Winter MR; Layous M; Hijaze E; Ben-Tabou de-Leon S J Struct Biol; 2021 Dec; 213(4):107797. PubMed ID: 34530133 [TBL] [Abstract][Full Text] [Related]
24. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms. Hinman VF; Cheatle Jarvela AM Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884 [TBL] [Abstract][Full Text] [Related]
25. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. Dylus DV; Czarkwiani A; Stångberg J; Ortega-Martinez O; Dupont S; Oliveri P Evodevo; 2016; 7():2. PubMed ID: 26759711 [TBL] [Abstract][Full Text] [Related]
26. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development. Sharma T; Ettensohn CA Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034 [TBL] [Abstract][Full Text] [Related]
27. Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo. Tarsis K; Gildor T; Morgulis M; Ben-Tabou de-Leon S Dev Dyn; 2022 Aug; 251(8):1322-1339. PubMed ID: 35403290 [TBL] [Abstract][Full Text] [Related]
28. New hypotheses of cell type diversity and novelty from orthology-driven comparative single cell and nuclei transcriptomics in echinoderms. Meyer A; Ku C; Hatleberg WL; Telmer CA; Hinman V Elife; 2023 Jul; 12():. PubMed ID: 37470227 [TBL] [Abstract][Full Text] [Related]
29. microRNA-1 regulates sea urchin skeletogenesis by directly targeting skeletogenic genes and modulating components of signaling pathways. Sampilo NF; Song JL Dev Biol; 2024 Apr; 508():123-137. PubMed ID: 38290645 [TBL] [Abstract][Full Text] [Related]
30. Functional divergence of paralogous transcription factors supported the evolution of biomineralization in echinoderms. Khor JM; Ettensohn CA Elife; 2017 Nov; 6():. PubMed ID: 29154754 [TBL] [Abstract][Full Text] [Related]
31. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo. Sharma T; Ettensohn CA Development; 2010 Apr; 137(7):1149-57. PubMed ID: 20181745 [TBL] [Abstract][Full Text] [Related]
32. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins. Hinman VF; Nguyen A; Davidson EH Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756 [TBL] [Abstract][Full Text] [Related]
33. Echinobase: a resource to support the echinoderm research community. Telmer CA; Karimi K; Chess MM; Agalakov S; Arshinoff BI; Lotay V; Wang DZ; Chu S; Pells TJ; Vize PD; Hinman VF; Ettensohn CA Genetics; 2024 May; 227(1):. PubMed ID: 38262680 [TBL] [Abstract][Full Text] [Related]
34. Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses. Erkenbrack EM; Davidson EH Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4075-84. PubMed ID: 26170318 [TBL] [Abstract][Full Text] [Related]
35. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Livingston BT; Killian CE; Wilt F; Cameron A; Landrum MJ; Ermolaeva O; Sapojnikov V; Maglott DR; Buchanan AM; Ettensohn CA Dev Biol; 2006 Dec; 300(1):335-48. PubMed ID: 16987510 [TBL] [Abstract][Full Text] [Related]
36. Molecular characterisation of SALMFamide neuropeptides in sea urchins. Elphick MR; Thorndyke MC J Exp Biol; 2005 Nov; 208(Pt 22):4273-82. PubMed ID: 16272250 [TBL] [Abstract][Full Text] [Related]
37. Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms. Morgulis M; Gildor T; Roopin M; Sher N; Malik A; Lalzar M; Dines M; Ben-Tabou de-Leon S; Khalaily L; Ben-Tabou de-Leon S Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12353-12362. PubMed ID: 31152134 [TBL] [Abstract][Full Text] [Related]
39. ROCK and the actomyosin network control biomineral growth and morphology during sea urchin skeletogenesis. Hijaze E; Gildor T; Seidel R; Layous M; Winter M; Bertinetti L; Politi Y; Ben-Tabou de-Leon S Elife; 2024 Apr; 12():. PubMed ID: 38573316 [TBL] [Abstract][Full Text] [Related]
40. Gene regulatory networks for ectoderm specification in sea urchin embryos. Su YH Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]