BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30264543)

  • 1. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases.
    Shi R; Shen XX; Rokas A; Eichman BF
    Bioessays; 2018 Nov; 40(11):e1800133. PubMed ID: 30264543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC.
    Shi R; Mullins EA; Shen XX; Lay KT; Yuen PK; David SS; Rokas A; Eichman BF
    EMBO J; 2018 Jan; 37(1):63-74. PubMed ID: 29054852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
    Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF
    Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases.
    Mullins EA; Shi R; Kotsch LA; Eichman BF
    PLoS One; 2015; 10(5):e0127733. PubMed ID: 25978435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new family of proteins related to the HEAT-like repeat DNA glycosylases with affinity for branched DNA structures.
    Backe PH; Simm R; Laerdahl JK; Dalhus B; Fagerlund A; Okstad OA; Rognes T; Alseth I; Kolstø AB; Bjørås M
    J Struct Biol; 2013 Jul; 183(1):66-75. PubMed ID: 23623903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway.
    Mullins EA; Rodriguez AA; Bradley NP; Eichman BF
    Trends Biochem Sci; 2019 Sep; 44(9):765-781. PubMed ID: 31078398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unprecedented nucleic acid capture mechanism for excision of DNA damage.
    Rubinson EH; Gowda AS; Spratt TE; Gold B; Eichman BF
    Nature; 2010 Nov; 468(7322):406-11. PubMed ID: 20927102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiating base excision repair in chromatin.
    Kennedy EE; Caffrey PJ; Delaney S
    DNA Repair (Amst); 2018 Nov; 71():87-92. PubMed ID: 30170831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD.
    Rubinson EH; Metz AH; O'Quin J; Eichman BF
    J Mol Biol; 2008 Aug; 381(1):13-23. PubMed ID: 18585735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-flipping DNA glycosylase AlkD scans DNA without formation of a stable interrogation complex.
    Ahmadi A; Till K; Backe PH; Blicher P; Diekmann R; Schüttpelz M; Glette K; Tørresen J; Bjørås M; Rowe AD; Dalhus B
    Commun Biol; 2021 Jul; 4(1):876. PubMed ID: 34267321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, function and evolution of the Helix-hairpin-Helix DNA glycosylase superfamily: Piecing together the evolutionary puzzle of DNA base damage repair mechanisms.
    Trasviña-Arenas CH; Demir M; Lin WJ; David SS
    DNA Repair (Amst); 2021 Dec; 108():103231. PubMed ID: 34649144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic Methods for Studying DNA Glycosylases Functioning in Base Excision Repair.
    Coey CT; Drohat AC
    Methods Enzymol; 2017; 592():357-376. PubMed ID: 28668127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.
    Alseth I; Rognes T; Lindbäck T; Solberg I; Robertsen K; Kristiansen KI; Mainieri D; Lillehagen L; Kolstø AB; Bjørås M
    Mol Microbiol; 2006 Mar; 59(5):1602-9. PubMed ID: 16468998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallizing thoughts about DNA base excision repair.
    Hollis T; Lau A; Ellenberger T
    Prog Nucleic Acid Res Mol Biol; 2001; 68():305-14. PubMed ID: 11554308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?
    Lee AJ; Wallace SS
    Free Radic Biol Med; 2017 Jun; 107():170-178. PubMed ID: 27865982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Search Complex and Recognition Mechanism of the AlkD-DNA Glycosylase.
    Votaw KA; McCullagh M
    J Phys Chem B; 2019 Jan; 123(1):95-105. PubMed ID: 30525620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative DNA damage repair in mammalian cells: a new perspective.
    Hazra TK; Das A; Das S; Choudhury S; Kow YW; Roy R
    DNA Repair (Amst); 2007 Apr; 6(4):470-80. PubMed ID: 17116430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
    Hitomi K; Iwai S; Tainer JA
    DNA Repair (Amst); 2007 Apr; 6(4):410-28. PubMed ID: 17208522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic Milestones of Damage Recognition by DNA Glycosylases of the Helix-Hairpin-Helix Structural Superfamily.
    Kuznetsov NA; Fedorova OS
    Adv Exp Med Biol; 2020; 1241():1-18. PubMed ID: 32383112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.