These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30264847)

  • 21. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological comfort of biofunctional textiles.
    Bartels VT
    Curr Probl Dermatol; 2006; 33():51-66. PubMed ID: 16766881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative study of fabric protection against ultraviolet-induced erythema determined by spectrophotometric and human skin measurements.
    Menzies SW; Lukins PB; Greenoak GE; Walker PJ; Pailthorpe MT; Martin JM; David SK; Georgouras KE
    Photodermatol Photoimmunol Photomed; 1991 Aug; 8(4):157-63. PubMed ID: 1814426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of surface acoustic waves on droplet impact dynamics.
    Satpathi NS; Nampoothiri KN; Sen AK
    J Colloid Interface Sci; 2023 Jul; 641():499-509. PubMed ID: 36948105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Penetration and ligament formation of viscoelastic droplets impacting on the superhydrophobic mesh.
    Mehrizi AA; Lin S; Sun L; Wang Y; Chen L
    Sci Rep; 2022 Jul; 12(1):11920. PubMed ID: 35831383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrothermally Assisted Surface Charge Density Gradient Printing to Drive Droplet Transport.
    Wang F; Sun Y; Zong G; Liang W; Yang B; Guo F; Yangou C; Wang Y; Zhang Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3526-3535. PubMed ID: 34990109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water penetration dynamics through a Janus mesh during drop impact.
    Bae C; Oh S; Han J; Nam Y; Lee C
    Soft Matter; 2020 Jul; 16(26):6072-6081. PubMed ID: 32638817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Penetration Behavior of a Water Droplet into a Cylindrical Hydrophobic Pore.
    Nonomura Y; Tanaka T; Mayama H
    Langmuir; 2016 Jun; 32(25):6328-34. PubMed ID: 27249319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Droplet Impact and Spreading on Inclined Surfaces.
    Srivastava T; Jena SK; Kondaraju S
    Langmuir; 2021 Nov; 37(46):13737-13745. PubMed ID: 34779208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impacting Water Droplets Can Alleviate Dust from Slanted Hydrophobic Surfaces.
    Yilbas BS; Abubakar AA; Ali H; Al-Sharafi A; Sahin AZ; Sunar M; Al-Qahtani H
    Langmuir; 2021 Apr; 37(14):4355-4369. PubMed ID: 33789039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
    Lee JB; Derome D; Guyer R; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1299-308. PubMed ID: 26743317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial microfluidic transport on micropatterned superhydrophobic textile.
    Xing S; Jiang J; Pan T
    Lab Chip; 2013 May; 13(10):1937-47. PubMed ID: 23536189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viscous Droplet Impact on Nonwettable Textured Surfaces.
    Abolghasemibizaki M; Dilmaghani N; Mohammadi R; Castano CE
    Langmuir; 2019 Aug; 35(33):10752-10761. PubMed ID: 31339727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of Wettability Mesh with Quasi-Rectangular-Restraining Capacity to Water.
    Liu Z; Zheng H; Zhang H; Han Y; Chen Y; Huang L; Wang X; Liu X; Yang X
    Langmuir; 2019 Jul; 35(28):9177-9183. PubMed ID: 31265303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic effects and adhesion of water droplet impact on hydrophobic surfaces: bouncing or sticking.
    Li Z; Kong Q; Ma X; Zang D; Guan X; Ren X
    Nanoscale; 2017 Jun; 9(24):8249-8255. PubMed ID: 28585977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of droplet impact and deposit formation on leaf surfaces.
    Dong X; Zhu H; Yang X
    Pest Manag Sci; 2015 Feb; 71(2):302-8. PubMed ID: 24753323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Migration of a droplet in a cylindrical tube in the creeping flow regime.
    Nath B; Biswas G; Dalal A; Sahu KC
    Phys Rev E; 2017 Mar; 95(3-1):033110. PubMed ID: 28415194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.