These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30264915)

  • 21. Confirmed by X-ray crystallography: the B⋅B one-electron σ bond.
    Hübner A; Diehl AM; Diefenbach M; Endeward B; Bolte M; Lerner HW; Holthausen MC; Wagner M
    Angew Chem Int Ed Engl; 2014 May; 53(19):4832-5. PubMed ID: 24668861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach.
    Yurenko YP; Novotný J; Sklenář V; Marek R
    Phys Chem Chem Phys; 2014 Feb; 16(5):2072-84. PubMed ID: 24343126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy decomposition analysis of single bonds within Kohn-Sham density functional theory.
    Levine DS; Head-Gordon M
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12649-12656. PubMed ID: 29158379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inter-anion chalcogen bonds: Are they anti-electrostatic in nature?
    Fan D; Chen L; Wang C; Yin S; Mo Y
    J Chem Phys; 2021 Dec; 155(23):234302. PubMed ID: 34937369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal Field in Rare-Earth Complexes: From Electrostatics to Bonding.
    Alessandri R; Zulfikri H; Autschbach J; Bolvin H
    Chemistry; 2018 Apr; 24(21):5538-5550. PubMed ID: 29356203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.
    Brownridge S; Crawford MJ; Du H; Harcourt RD; Knapp C; Laitinen RS; Passmore J; Rautiainen JM; Suontamo RJ; Valkonen J
    Inorg Chem; 2007 Feb; 46(3):681-99. PubMed ID: 17257010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen bonding from a valence bond theory perspective: the role of covalency.
    Nemes CT; Laconsay CJ; Galbraith JM
    Phys Chem Chem Phys; 2018 Aug; 20(32):20963-20969. PubMed ID: 30070291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The nature of the hydrogen bond: a synthesis from the interacting quantum atoms picture.
    Martín Pendás A; Blanco MA; Francisco E
    J Chem Phys; 2006 Nov; 125(18):184112. PubMed ID: 17115743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beryllium Bonding in the Light of Modern Quantum Chemical Topology Tools.
    Casals-Sainz JL; Jiménez-Grávalos F; Costales A; Francisco E; Pendás ÁM
    J Phys Chem A; 2018 Jan; 122(3):849-858. PubMed ID: 29266947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular structures, bond energies, and bonding analysis of group 11 cyanides TM(CN) and isocyanides TM(NC) (TM = Cu, Ag, Au).
    Dietz O; Rayón VM; Frenking G
    Inorg Chem; 2003 Aug; 42(16):4977-84. PubMed ID: 12895123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential functions for hydrogen bonds in protein structure prediction and design.
    Morozov AV; Kortemme T
    Adv Protein Chem; 2005; 72():1-38. PubMed ID: 16581371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ab initio investigation of the complexes between bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions.
    Lu YX; Zou JW; Wang YH; Jiang YJ; Yu QS
    J Phys Chem A; 2007 Oct; 111(42):10781-8. PubMed ID: 17918810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the nature of chemical bonding in uranyl(VI) complexes with quantum chemical methods.
    Vallet V; Wahlgren U; Grenthe I
    J Phys Chem A; 2012 Dec; 116(50):12373-80. PubMed ID: 23151258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. U-Oyl Stretching Vibrations as a Quantitative Measure of the Equatorial Bond Covalency in Uranyl Complexes: A Quantum-Chemical Investigation.
    Di Pietro P; Kerridge A
    Inorg Chem; 2016 Jan; 55(2):573-83. PubMed ID: 26700790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(8):1624-52. PubMed ID: 25350312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of the Interacting Quantum Atoms Approach to the S66 and Ionic-Hydrogen-Bond Datasets for Noncovalent Interactions.
    Suárez D; Díaz N; Francisco E; Martín Pendás A
    Chemphyschem; 2018 Apr; 19(8):973-987. PubMed ID: 29356250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unicorns, Rhinoceroses and Chemical Bonds.
    Gribben J; Wilson TR; Eberhart ME
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths.
    Foroutan-Nejad C; Shahbazian S; Marek R
    Chemistry; 2014 Aug; 20(32):10140-52. PubMed ID: 24990224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On Atoms-in-Molecules Energies from Kohn-Sham Calculations.
    Tognetti V; Joubert L
    Chemphyschem; 2017 Oct; 18(19):2675-2687. PubMed ID: 28675569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.