These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30265115)

  • 1. Relativistic Measurement Backaction in the Quantum Dirac Oscillator.
    Zhang K; Zhou L; Meystre P; Zhang W
    Phys Rev Lett; 2018 Sep; 121(11):110401. PubMed ID: 30265115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum simulation of the Dirac equation.
    Gerritsma R; Kirchmair G; Zähringer F; Solano E; Blatt R; Roos CF
    Nature; 2010 Jan; 463(7277):68-71. PubMed ID: 20054392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Backaction Evading Measurement of Collective Mechanical Modes.
    Ockeloen-Korppi CF; Damskägg E; Pirkkalainen JM; Clerk AA; Woolley MJ; Sillanpää MA
    Phys Rev Lett; 2016 Sep; 117(14):140401. PubMed ID: 27740800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum measurement-induced antiferromagnetic order and density modulations in ultracold Fermi gases in optical lattices.
    Mazzucchi G; Caballero-Benitez SF; Mekhov IB
    Sci Rep; 2016 Aug; 6():31196. PubMed ID: 27510369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical simulation of relativistic Zitterbewegung in photonic lattices.
    Dreisow F; Heinrich M; Keil R; Tünnermann A; Nolte S; Longhi S; Szameit A
    Phys Rev Lett; 2010 Oct; 105(14):143902. PubMed ID: 21230830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First experimental realization of the Dirac oscillator.
    Franco-Villafañe JA; Sadurní E; Barkhofen S; Kuhl U; Mortessagne F; Seligman TH
    Phys Rev Lett; 2013 Oct; 111(17):170405. PubMed ID: 24206466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical backaction-evading measurement of a mechanical oscillator.
    Shomroni I; Qiu L; Malz D; Nunnenkamp A; Kippenberg TJ
    Nat Commun; 2019 May; 10(1):2086. PubMed ID: 31064984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dirac equation and quantum relativistic effects in a single trapped ion.
    Lamata L; León J; Schätz T; Solano E
    Phys Rev Lett; 2007 Jun; 98(25):253005. PubMed ID: 17678023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing Hidden Quantum Correlations in an Electromechanical Measurement.
    Ockeloen-Korppi CF; Damskägg E; Paraoanu GS; Massel F; Sillanpää MA
    Phys Rev Lett; 2018 Dec; 121(24):243601. PubMed ID: 30608715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum back-action-evading measurement of motion in a negative mass reference frame.
    Møller CB; Thomas RA; Vasilakis G; Zeuthen E; Tsaturyan Y; Balabas M; Jensen K; Schliesser A; Hammerer K; Polzik ES
    Nature; 2017 Jul; 547(7662):191-195. PubMed ID: 28703182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semirelativity in semiconductors: a review.
    Zawadzki W
    J Phys Condens Matter; 2017 Sep; 29(37):373004. PubMed ID: 28608783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming the Standard Quantum Limit in Gravitational Wave Detectors Using Spin Systems with a Negative Effective Mass.
    Khalili FY; Polzik ES
    Phys Rev Lett; 2018 Jul; 121(3):031101. PubMed ID: 30085801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved spin-orbit coupling model for use within the effective relativistic coupling by asymptotic representation (ERCAR) method.
    Wittenbrink N; Eisfeld W
    J Chem Phys; 2017 Apr; 146(14):144110. PubMed ID: 28411618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera.
    Xu HY; Wang GL; Huang L; Lai YC
    Phys Rev Lett; 2018 Mar; 120(12):124101. PubMed ID: 29694077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems.
    Xu H; Huang L; Lai YC; Grebogi C
    Sci Rep; 2015 Mar; 5():8963. PubMed ID: 25758591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional gas of massless Dirac fermions in graphene.
    Novoselov KS; Geim AK; Morozov SV; Jiang D; Katsnelson MI; Grigorieva IV; Dubonos SV; Firsov AA
    Nature; 2005 Nov; 438(7065):197-200. PubMed ID: 16281030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionalization Waves in Two-Dimensional Dirac Fermions: Quantum Imprint from One Dimension.
    Davis SM; Foster MS
    Phys Rev Lett; 2019 Feb; 122(6):065302. PubMed ID: 30822045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sauter-Schwinger effect with a quantum gas.
    Piñeiro AM; Genkina D; Lu M; Spielman IB
    New J Phys; 2019; 21(8):. PubMed ID: 32189988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy spectra with the Dirac equation of the q-deformed generalized Pöschl-Teller potential via the Feynman approach for
    Ghobrini A; Boukabcha H; Ami I
    J Mol Model; 2024 Sep; 30(10):340. PubMed ID: 39289190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductance fluctuations in InAs quantum wells possibly driven by Zitterbewegung.
    Iwasaki Y; Hashimoto Y; Nakamura T; Katsumoto S
    Sci Rep; 2017 Aug; 7(1):7909. PubMed ID: 28801598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.