These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30265201)

  • 1. Interaction of Brassicaceae Seed Meal Soil Amendment and Apple Rootstock Genotype on Microbiome Structure and Replant Disease Suppression.
    Wang L; Mazzola M
    Phytopathology; 2019 Apr; 109(4):607-614. PubMed ID: 30265201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field Evaluation of Reduced Rate Brassicaceae Seed Meal Amendment and Rootstock Genotype on the Microbiome and Control of Apple Replant Disease.
    Wang L; Mazzola M
    Phytopathology; 2019 Aug; 109(8):1378-1391. PubMed ID: 30887889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation.
    Mazzola M; Hewavitharana SS; Strauss SL
    Phytopathology; 2015 Apr; 105(4):460-9. PubMed ID: 25412009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Brassicaceous Seed Meal and Apple Rootstock on Recovery of Pythium spp. and Pratylenchus penetrans from Roots Grown in Replant Soils.
    Mazzola M; Brown J; Zhao X; Izzo AD; Fazio G
    Plant Dis; 2009 Jan; 93(1):51-57. PubMed ID: 30764268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Analysis of the Apple Root Transcriptome as Affected by Rootstock Genotype and Brassicaceae Seed Meal Soil Amendment: Implications for Plant Health.
    Wang L; Somera TS; Hargarten H; Honaas L; Mazzola M
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33917441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Source-Dependent Effects of Anaerobic Soil Disinfestation on Soil Microbiome and Suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans.
    Hewavitharana SS; Mazzola M
    Phytopathology; 2016 Sep; 106(9):1015-28. PubMed ID: 27143411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a brassicaceae species and time-dependent manner.
    Mazzola M; Brown J; Izzo AD; Cohen MF
    Phytopathology; 2007 Apr; 97(4):454-60. PubMed ID: 18943286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of Brassicaceous Seed Meal Formulations for the Control of Apple Replant Disease in Conventional and Organic Production Systems.
    Mazzola M; Brown J
    Plant Dis; 2010 Jul; 94(7):835-842. PubMed ID: 30743552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Soil Physical Conditions on Emission of Allyl Isothiocyanate and Subsequent Microbial Inhibition in Response to Brassicaceae Seed Meal Amendment.
    Wang L; Mazzola M
    Plant Dis; 2019 May; 103(5):846-852. PubMed ID: 30856078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Root-Lesion Nematode,
    King L; Munro P; Xu H; Jones M; Forge T
    Plant Dis; 2024 Jul; 108(7):1993-1999. PubMed ID: 38213117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonads contribute to regulation of Pratylenchus penetrans (Nematoda) populations on apple.
    Watson TT; Forge TA; Nelson LM
    Can J Microbiol; 2018 Nov; 64(11):775-785. PubMed ID: 29791808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of Specific Apple Root Pathogens by Brassica napus Seed Meal Amendment Regardless of Glucosinolate Content.
    Mazzola M; Granatstein DM; Elfving DC; Mullinix K
    Phytopathology; 2001 Jul; 91(7):673-9. PubMed ID: 18942997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial diversity composition of apple tree roots and resistance of apple Valsa canker with different grafting rootstock types.
    Wang J; Wang R; Kang F; Yan X; Sun L; Wang N; Gong Y; Gao X; Huang L
    BMC Microbiol; 2022 Jun; 22(1):148. PubMed ID: 35659248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apple rootstocks with different phosphorus efficiency exhibit alterations in rhizosphere bacterial structure.
    Chai X; Xie L; Wang X; Wang H; Zhang J; Han Z; Wu T; Zhang X; Xu X; Wang Y
    J Appl Microbiol; 2020 May; 128(5):1460-1471. PubMed ID: 31829487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials.
    Mazzola M; Gu YH
    Phytopathology; 2000 Feb; 90(2):114-9. PubMed ID: 18944598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Field Efficacy of Management Strategies Containing Brassica napus Seed Meal or Green Manure for the Control of Apple Replant Disease.
    Mazzola M; Mullinix K
    Plant Dis; 2005 Nov; 89(11):1207-1213. PubMed ID: 30786445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a holistic view of orchard ecosystem dynamics: A comprehensive review of the multiple factors governing development or suppression of apple replant disease.
    Somera TS; Mazzola M
    Front Microbiol; 2022; 13():949404. PubMed ID: 35958152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-row cropping and rootstock genotype selection in a UK cider orchard to combat apple replant disease.
    Cook C; Magan N; Xu X
    Phytopathol Res; 2023; 5(1):28. PubMed ID: 38800641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhizosphere competent inoculants modulate the apple root-associated microbiome and plant phytoalexins.
    Hauschild K; Orth N; Liu B; Giongo A; Gschwendtner S; Beerhues L; Schloter M; Vetterlein D; Winkelmann T; Smalla K
    Appl Microbiol Biotechnol; 2024 May; 108(1):344. PubMed ID: 38801472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root growth, function and rhizosphere microbiome analyses show local rather than systemic effects in apple plant response to replant disease soil.
    Lucas M; Balbín-Suárez A; Smalla K; Vetterlein D
    PLoS One; 2018; 13(10):e0204922. PubMed ID: 30296282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.