BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30265314)

  • 21. Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle.
    De Mandal S; Chatterjee R; Kumar NS
    BMC Microbiol; 2017 Apr; 17(1):90. PubMed ID: 28399822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and function of methanotrophic communities in a landfill-cover soil.
    Henneberger R; Lüke C; Mosberger L; Schroth MH
    FEMS Microbiol Ecol; 2012 Jul; 81(1):52-65. PubMed ID: 22172054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upland Soil Cluster Gamma dominates methanotrophic communities in upland grassland soils.
    Deng Y; Che R; Wang F; Conrad R; Dumont M; Yun J; Wu Y; Hu A; Fang J; Xu Z; Cui X; Wang Y
    Sci Total Environ; 2019 Jun; 670():826-836. PubMed ID: 30921716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ammonia- and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils.
    Yang Y; Shan J; Zhang J; Zhang X; Xie S; Liu Y
    Appl Microbiol Biotechnol; 2014 Dec; 98(24):10197-209. PubMed ID: 25030456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil.
    Héry M; Singer AC; Kumaresan D; Bodrossy L; Stralis-Pavese N; Prosser JI; Thompson IP; Murrell JC
    ISME J; 2008 Jan; 2(1):92-104. PubMed ID: 18049457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial contributions to subterranean methane sinks.
    Lennon JT; Nguyễn-Thùy D; Phạm TM; Drobniak A; Tạ PH; Phạm NÐ; Streil T; Webster KD; Schimmelmann A
    Geobiology; 2017 Mar; 15(2):254-258. PubMed ID: 27671735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils.
    Kolb S; Knief C; Dunfield PF; Conrad R
    Environ Microbiol; 2005 Aug; 7(8):1150-61. PubMed ID: 16011752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows.
    Krause S; Niklaus PA; Badwan Morcillo S; Meima Franke M; Lüke C; Reim A; Bodelier PL
    FEMS Microbiol Ecol; 2015 Nov; 91(11):. PubMed ID: 26449384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial patterns of methanotrophic communities along a hydrological gradient in a riparian wetland.
    Krause S; Meima-Franke M; Hefting MM; Bodelier PL
    FEMS Microbiol Ecol; 2013 Oct; 86(1):59-70. PubMed ID: 23397906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methanotrophic communities in Australian woodland soils of varying salinity.
    Bissett A; Abell GC; Bodrossy L; Richardson AE; Thrall PH
    FEMS Microbiol Ecol; 2012 Jun; 80(3):685-95. PubMed ID: 22375901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau.
    Liu Y; Zhang J; Zhao L; Li Y; Yang Y; Xie S
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2371-81. PubMed ID: 25698510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vertical profiles of abundance and potential activity of methane-oxidizing bacteria in sediment of Lake Biwa, Japan.
    Tsutsumi M; Kojima H; Fukui M
    Microbes Environ; 2012; 27(1):67-71. PubMed ID: 22200642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ammonium promoting methane oxidation by stimulating the Type Ia methane-oxidizing bacteria in tidal flat sediments of the Yangtze River estuary.
    Xia F; Jiang QY; Zhu T; Zou B; Liu H; Quan ZX
    Sci Total Environ; 2021 Nov; 793():148470. PubMed ID: 34166901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China.
    Zhang M; Luo Y; Lin L; Lin X; Hetharua B; Zhao W; Zhou M; Zhan Q; Xu H; Zheng T; Tian Y
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2441-2454. PubMed ID: 29387953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only.
    Pan Y; Abell GC; Bodelier PL; Meima-Franke M; Sessitsch A; Bodrossy L
    Microb Ecol; 2014 Aug; 68(2):259-70. PubMed ID: 24658413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes.
    Sundh I; Bastviken D; Tranvik LJ
    Appl Environ Microbiol; 2005 Nov; 71(11):6746-52. PubMed ID: 16269705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methane-oxidizing bacteria in a Finnish raised mire complex: effects of site fertility and drainage.
    Jaatinen K; Tuittila ES; Laine J; Yrjälä K; Fritze H
    Microb Ecol; 2005 Oct; 50(3):429-39. PubMed ID: 16283115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diversity of Fungal Communities in Heshang Cave of Central China Revealed by Mycobiome-Sequencing.
    Man B; Wang H; Yun Y; Xiang X; Wang R; Duan Y; Cheng X
    Front Microbiol; 2018; 9():1400. PubMed ID: 30061866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Type-specific quantification of particulate methane monooxygenase gene of methane-oxidizing bacteria at the oxic-anoxic interface of a surface paddy soil by digital PCR.
    Shinjo R; Oe F; Nakagawa K; Murase J; Asakawa S; Watanabe T
    Environ Microbiol Rep; 2023 Oct; 15(5):392-403. PubMed ID: 37078408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phylogenetic diversity of culturable fungi in the Heshang Cave, central China.
    Man B; Wang H; Xiang X; Wang R; Yun Y; Gong L
    Front Microbiol; 2015; 6():1158. PubMed ID: 26539184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.