BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30265314)

  • 41. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates.
    Reis PCJ; Thottathil SD; Ruiz-González C; Prairie YT
    Environ Microbiol; 2020 Feb; 22(2):738-751. PubMed ID: 31769176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil.
    Shrestha PM; Kammann C; Lenhart K; Dam B; Liesack W
    ISME J; 2012 Jun; 6(6):1115-26. PubMed ID: 22189499
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of methanotroph abundance in a freshwater lake sediment.
    Costello AM; Auman AJ; Macalady JL; Scow KM; Lidstrom ME
    Environ Microbiol; 2002 Aug; 4(8):443-50. PubMed ID: 12153585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment.
    Sorokin DY; Jones BE; Kuenen JG
    Extremophiles; 2000 Jun; 4(3):145-55. PubMed ID: 10879559
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir.
    Wang Y; Huang P; Ye F; Jiang Y; Song L; Op den Camp HJM; Zhu G; Wu S
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1977-1986. PubMed ID: 26515563
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Does dissolved organic carbon regulate biological methane oxidation in semiarid soils?
    Sullivan BW; Selmants PC; Hart SC
    Glob Chang Biol; 2013 Jul; 19(7):2149-57. PubMed ID: 23526765
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations.
    Chiri E; Greening C; Lappan R; Waite DW; Jirapanjawat T; Dong X; Arndt SK; Nauer PA
    ISME J; 2020 Nov; 14(11):2715-2731. PubMed ID: 32709975
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Field-scale labelling and activity quantification of methane-oxidizing bacteria in a landfill-cover soil.
    Henneberger R; Chiri E; Blees J; Niemann H; Lehmann MF; Schroth MH
    FEMS Microbiol Ecol; 2013 Feb; 83(2):392-401. PubMed ID: 22928887
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activity and abundance of methane-oxidizing bacteria in secondary forest and manioc plantations of Amazonian Dark Earth and their adjacent soils.
    Lima AB; Muniz AW; Dumont MG
    Front Microbiol; 2014; 5():550. PubMed ID: 25374565
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Divergent drivers of the microbial methane sink in temperate forest and grassland soils.
    Täumer J; Kolb S; Boeddinghaus RS; Wang H; Schöning I; Schrumpf M; Urich T; Marhan S
    Glob Chang Biol; 2021 Feb; 27(4):929-940. PubMed ID: 33135275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacteria and Metabolic Potential in Karst Caves Revealed by Intensive Bacterial Cultivation and Genome Assembly.
    Zhu HZ; Zhang ZF; Zhou N; Jiang CY; Wang BJ; Cai L; Wang HM; Liu SJ
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452024
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Relationship between pH and Bacterial Communities in a Single Karst Ecosystem and Its Implication for Soil Acidification.
    Yun Y; Wang H; Man B; Xiang X; Zhou J; Qiu X; Duan Y; Engel AS
    Front Microbiol; 2016; 7():1955. PubMed ID: 28018299
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems.
    Zhu G; Zhou L; Wang Y; Wang S; Guo J; Long XE; Sun X; Jiang B; Hou Q; Jetten MS; Yin C
    Environ Microbiol Rep; 2015 Feb; 7(1):128-38. PubMed ID: 25223900
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Co-occurrence pattern and function prediction of bacterial community in Karst cave.
    Dong Y; Gao J; Wu Q; Ai Y; Huang Y; Wei W; Sun S; Weng Q
    BMC Microbiol; 2020 May; 20(1):137. PubMed ID: 32471344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment.
    Dumont MG; Pommerenke B; Casper P; Conrad R
    Environ Microbiol; 2011 May; 13(5):1153-67. PubMed ID: 21261798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Effects of different long-term fertilizations on community properties and functions of methanotrophs in dark brown soil].
    Yang QB; Fan FL; Wang WX; Liang YC; Li ZJ; Cui XA; Wei D
    Huan Jing Ke Xue; 2010 Nov; 31(11):2756-62. PubMed ID: 21250462
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of lake constance (Germany).
    Rahalkar M; Deutzmann J; Schink B; Bussmann I
    Appl Environ Microbiol; 2009 Jan; 75(1):119-26. PubMed ID: 18997033
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation and update of cutoff values for methanotrophic pmoA gene sequences.
    Wen X; Yang S; Liebner S
    Arch Microbiol; 2016 Sep; 198(7):629-36. PubMed ID: 27098810
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of soil type and plant age on the population size of rhizospheric methanotrophs and their activities in tropical rice soils.
    Vishwakarma P; Dubey SK
    J Basic Microbiol; 2007 Aug; 47(4):351-7. PubMed ID: 17647202
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Profiling the Bacterial Diversity in a Typical Karst Tiankeng of China.
    Pu G; Lv Y; Dong L; Zhou L; Huang K; Zeng D; Mo L; Xu G
    Biomolecules; 2019 May; 9(5):. PubMed ID: 31091762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.