These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30265514)

  • 1. Bimetal Prussian Blue as a Continuously Variable Platform for Investigating the Composition-Activity Relationship of Phosphides-Based Electrocatalysts for Water Oxidation.
    Li Z; Zhao TT; Jiang WJ; Niu S; Wu M; Hu JS
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):35904-35910. PubMed ID: 30265514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrids of Cobalt/Iron Phosphides Derived from Bimetal-Organic Frameworks as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.
    Zhang T; Du J; Xi P; Xu C
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):362-370. PubMed ID: 27996250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities with Trace-Level Fe Doping in Ni- and Co-Layered Double Hydroxides for Overall Water-Splitting.
    Rajeshkhanna G; Singh TI; Kim NH; Lee JH
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42453-42468. PubMed ID: 30430830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Hollow Cobalt-Iron Phosphides Nanospheres by Controllable Atom Migration for Enhanced Water Oxidation and Splitting.
    Chen Q; Zhang Q; Liu H; Liang J; Peng W; Li Y; Zhang F; Fan X
    Small; 2021 Apr; 17(13):e2007858. PubMed ID: 33690975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-Shell-Structured Prussian Blue Analogues Ternary Metal Phosphides as Efficient Bifunctional Electrocatalysts for OER and HER.
    Zhou X; Zi Y; Xu L; Li T; Yang J; Tang J
    Inorg Chem; 2021 Aug; 60(15):11661-11671. PubMed ID: 34282615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Hierarchical Cube-on-plate Metal Phosphides as Bifunctional Electrocatalysts for Overall Water Splitting.
    Ma J; Wang Y; Pan W; Zhang J
    Chem Asian J; 2020 May; 15(9):1500-1504. PubMed ID: 32167236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Structure Evolution in Tricomponent Metal Phosphides with Reduced Activation Energy for Efficient Electrocatalytic Oxygen Evolution.
    Wang M; Dong CL; Huang YC; Li Y; Shen S
    Small; 2018 Aug; 14(35):e1801756. PubMed ID: 30084542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting water oxidation electrocatalysis.
    Wang C; Shang H; Wang Y; Li J; Guo S; Guo J; Du Y
    Nanoscale; 2021 Apr; 13(15):7279-7284. PubMed ID: 33889888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prussian blue analogues-derived bimetallic iron-cobalt selenides for efficient overall water splitting.
    Zhang W; Zhang H; Luo R; Zhang M; Yan X; Sun X; Shen J; Han W; Wang L; Li J
    J Colloid Interface Sci; 2019 Jul; 548():48-55. PubMed ID: 30981963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-Cobalt-Cerium Multimetallic Oxides Derived from Prussian Blue Precursors: Enhanced Oxygen Evolution Electrocatalysis.
    Wu Y; Kong Y; Du B; Liu T; Ying S; Xiong D; Yi FY
    Chempluschem; 2023 Feb; 88(2):e202200422. PubMed ID: 36782384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous NiFe-Oxide Nanocubes as Bifunctional Electrocatalysts for Efficient Water-Splitting.
    Kumar A; Bhattacharyya S
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41906-41915. PubMed ID: 29115827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional metal-organic framework derived porous CoP
    Wu T; Pi M; Wang X; Zhang D; Chen S
    Phys Chem Chem Phys; 2017 Jan; 19(3):2104-2110. PubMed ID: 28045143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carved nanoframes of cobalt-iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting.
    Lian Y; Sun H; Wang X; Qi P; Mu Q; Chen Y; Ye J; Zhao X; Deng Z; Peng Y
    Chem Sci; 2019 Jan; 10(2):464-474. PubMed ID: 30713644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for Developing Transition Metal Phosphides in Electrochemical Water Splitting.
    Ying J; Wang H
    Front Chem; 2021; 9():700020. PubMed ID: 34805087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of Co
    Zhang L; Wang W; Xu G; Song H; Yang L; Jia D
    J Colloid Interface Sci; 2019 Oct; 554():202-209. PubMed ID: 31301520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting.
    Zhang G; Wang G; Liu Y; Liu H; Qu J; Li J
    J Am Chem Soc; 2016 Nov; 138(44):14686-14693. PubMed ID: 27797511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution.
    Pu Z; Zhang C; Amiinu IS; Li W; Wu L; Mu S
    ACS Appl Mater Interfaces; 2017 May; 9(19):16187-16193. PubMed ID: 28452469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting.
    Ma X; Zhang W; Deng Y; Zhong C; Hu W; Han X
    Nanoscale; 2018 Mar; 10(10):4816-4824. PubMed ID: 29473086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Area Synthesis of a Ni
    Wang XD; Cao Y; Teng Y; Chen HY; Xu YF; Kuang DB
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32812-32819. PubMed ID: 28875698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting.
    Xuan C; Wang J; Xia W; Peng Z; Wu Z; Lei W; Xia K; Xin HL; Wang D
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26134-26142. PubMed ID: 28718291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.