These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30265553)

  • 1. Donor-Acceptor Pair Recombination in Size-Purified Silicon Quantum Dots.
    Sugimoto H; Yamamura M; Fujii R; Fujii M
    Nano Lett; 2018 Nov; 18(11):7282-7288. PubMed ID: 30265553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-Dependence of Acceptor and Donor Levels of Boron and Phosphorus Codoped Colloidal Silicon Nanocrystals.
    Hori Y; Kano S; Sugimoto H; Imakita K; Fujii M
    Nano Lett; 2016 Apr; 16(4):2615-20. PubMed ID: 26998965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise size separation of water-soluble red-to-near-infrared-luminescent silicon quantum dots by gel electrophoresis.
    Fujii M; Minami A; Sugimoto H
    Nanoscale; 2020 Apr; 12(16):9266-9271. PubMed ID: 32313916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ion doping with donor and acceptor impurities on intensity and lifetime of photoluminescence from SiO2 films with silicon quantum dots.
    Mikhaylov AN; Tetelbaum DI; Burdov VA; Gorshkov ON; Belov AI; Kambarov DA; Belyakov VA; Vasiliev VK; Kovalev AI; Gaponova DM
    J Nanosci Nanotechnol; 2008 Feb; 8(2):780-8. PubMed ID: 18464406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging Atomic Energy Levels in Zero-Dimensional Silicon Quantum Dots.
    Shirahata N; Nakamura J; Inoue JI; Ghosh B; Nemoto K; Nemoto Y; Takeguchi M; Masuda Y; Tanaka M; Ozin GA
    Nano Lett; 2020 Mar; 20(3):1491-1498. PubMed ID: 32046494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell.
    Hong SH; Kim YS; Lee W; Kim YH; Song JY; Jang JS; Park JH; Choi SH; Kim KJ
    Nanotechnology; 2011 Oct; 22(42):425203. PubMed ID: 21941033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-dependent donor and acceptor states in codoped Si nanocrystals studied by scanning tunneling spectroscopy.
    Ashkenazi O; Azulay D; Balberg I; Kano S; Sugimoto H; Fujii M; Millo O
    Nanoscale; 2017 Nov; 9(45):17884-17892. PubMed ID: 29120002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation.
    Mordvinova NE; Vinokurov AA; Lebedev OI; Kuznetsova TA; Dorofeev SG
    Beilstein J Nanotechnol; 2015; 6():1237-46. PubMed ID: 26114082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles study of silicon nanocrystals: structural and electronic properties, absorption, emission, and doping.
    Ossicini S; Bisi O; Degoli E; Marri I; Iori F; Luppi E; Magri R; Poli R; Cantele G; Ninno D; Trani F; Marsili M; Pulci O; Olevano V; Gatti M; Gaal-Nagy K; Incze A; Onida G
    J Nanosci Nanotechnol; 2008 Feb; 8(2):479-92. PubMed ID: 18464361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior.
    Debellis D; Gigli G; Ten Brinck S; Infante I; Giansante C
    Nano Lett; 2017 Feb; 17(2):1248-1254. PubMed ID: 28055216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of dopant-pair defects and doping efficiency in B- and P-doped silicon nanowires.
    Moon CY; Lee WJ; Chang KJ
    Nano Lett; 2008 Oct; 8(10):3086-91. PubMed ID: 18729413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots.
    Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK
    Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Codoping as a Strategy to Improve Optical Properties of Doped Semiconductor Quantum Dots.
    Zhang JZ; Cooper JK; Gul S
    J Phys Chem Lett; 2014 Nov; 5(21):3694-700. PubMed ID: 26278738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Si solid-state quantum dot-based materials for tandem solar cells.
    Conibeer G; Perez-Wurfl I; Hao X; Di D; Lin D
    Nanoscale Res Lett; 2012 Mar; 7(1):193. PubMed ID: 22436303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix.
    Hao XJ; Cho EC; Flynn C; Shen YS; Conibeer G; Green MA
    Nanotechnology; 2008 Oct; 19(42):424019. PubMed ID: 21832679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots.
    Ghosh S; Saha M; Ashok VD; Chatterjee A; De SK
    Nanotechnology; 2016 Apr; 27(15):155708. PubMed ID: 26934114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots.
    Baranov PG; Orlinskii SB; de Mello Donegá C; Schmidt J
    Appl Magn Reson; 2010 Oct; 39(1-2):151-183. PubMed ID: 20936163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz detection with an antenna-coupled highly-doped silicon quantum dot.
    Okamoto T; Fujimura N; Crespi L; Kodera T; Kawano Y
    Sci Rep; 2019 Dec; 9(1):18574. PubMed ID: 31819074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics and carrier transport in doped Si/SiO2 quantum dots.
    Garcia-Castello N; Illera S; Prades JD; Ossicini S; Cirera A; Guerra R
    Nanoscale; 2015 Aug; 7(29):12564-71. PubMed ID: 26144524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.