These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30265799)

  • 1. A Microcosm Study of Surface Sediment Environmental DNA: Decay Observation, Abundance Estimation, and Fragment Length Comparison.
    Wei N; Nakajima F; Tobino T
    Environ Sci Technol; 2018 Nov; 52(21):12428-12435. PubMed ID: 30265799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA.
    Jo T; Murakami H; Masuda R; Sakata MK; Yamamoto S; Minamoto T
    Mol Ecol Resour; 2017 Nov; 17(6):e25-e33. PubMed ID: 28449215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does Size Matter? An Experimental Evaluation of the Relative Abundance and Decay Rates of Aquatic Environmental DNA.
    Bylemans J; Furlan EM; Gleeson DM; Hardy CM; Duncan RP
    Environ Sci Technol; 2018 Jun; 52(11):6408-6416. PubMed ID: 29757618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of sediment and stream transport on detecting a source of environmental DNA.
    Nevers MB; Przybyla-Kelly K; Shively D; Morris CC; Dickey J; Byappanahalli MN
    PLoS One; 2020; 15(12):e0244086. PubMed ID: 33370371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. History, applications, methodological issues and perspectives for the use of environmental DNA (eDNA) in marine and freshwater environments.
    Díaz-Ferguson EE; Moyer GR
    Rev Biol Trop; 2014 Dec; 62(4):1273-84. PubMed ID: 25720166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic review and meta-analysis: Water type and temperature affect environmental DNA decay.
    Lamb PD; Fonseca VG; Maxwell DL; Nnanatu CC
    Mol Ecol Resour; 2022 Oct; 22(7):2494-2505. PubMed ID: 35510730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Temperature and Trophic State on Degradation of Environmental DNA in Lake Water.
    Eichmiller JJ; Best SE; Sorensen PW
    Environ Sci Technol; 2016 Feb; 50(4):1859-67. PubMed ID: 26771292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance.
    Tsuji S; Ushio M; Sakurai S; Minamoto T; Yamanaka H
    PLoS One; 2017; 12(4):e0176608. PubMed ID: 28448613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental DNA (eDNA) Shedding and Decay Rates to Model Freshwater Mussel eDNA Transport in a River.
    Sansom BJ; Sassoubre LM
    Environ Sci Technol; 2017 Dec; 51(24):14244-14253. PubMed ID: 29131600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can nuclear aquatic environmental DNA be a genetic marker for the accurate estimation of species abundance?
    Jo TS; Tsuri K; Yamanaka H
    Naturwissenschaften; 2022 Jul; 109(4):38. PubMed ID: 35861927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp.
    Williams MR; Stedtfeld RD; Engle C; Salach P; Fakher U; Stedtfeld T; Dreelin E; Stevenson RJ; Latimore J; Hashsham SA
    PLoS One; 2017; 12(10):e0186462. PubMed ID: 29036210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between the distribution of common carp and their environmental DNA in a small lake.
    Eichmiller JJ; Bajer PG; Sorensen PW
    PLoS One; 2014; 9(11):e112611. PubMed ID: 25383965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal variation in environmental DNA detection in sediment and water samples.
    Buxton AS; Groombridge JJ; Griffiths RA
    PLoS One; 2018; 13(1):e0191737. PubMed ID: 29352294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are bacteria potential sources of fish environmental DNA?
    Nukazawa K; Akahoshi K; Suzuki Y
    PLoS One; 2020; 15(3):e0230174. PubMed ID: 32163471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental conditions influence eDNA persistence in aquatic systems.
    Barnes MA; Turner CR; Jerde CL; Renshaw MA; Chadderton WL; Lodge DM
    Environ Sci Technol; 2014; 48(3):1819-27. PubMed ID: 24422450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water Flow and Biofilm Cover Influence Environmental DNA Detection in Recirculating Streams.
    Shogren AJ; Tank JL; Egan SP; August O; Rosi EJ; Hanrahan BR; Renshaw MA; Gantz CA; Bolster D
    Environ Sci Technol; 2018 Aug; 52(15):8530-8537. PubMed ID: 29995389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting marine pests using environmental DNA and biophysical models.
    Ellis MR; Clark ZSR; Treml EA; Brown MS; Matthews TG; Pocklington JB; Stafford-Bell RE; Bott NJ; Nai YH; Miller AD; Sherman CDH
    Sci Total Environ; 2022 Apr; 816():151666. PubMed ID: 34793806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental DNA preserved in marine sediment for detecting jellyfish blooms after a tsunami.
    Ogata M; Masuda R; Harino H; Sakata MK; Hatakeyama M; Yokoyama K; Yamashita Y; Minamoto T
    Sci Rep; 2021 Aug; 11(1):16830. PubMed ID: 34417484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental DNA reflects spatial and temporal jellyfish distribution.
    Minamoto T; Fukuda M; Katsuhara KR; Fujiwara A; Hidaka S; Yamamoto S; Takahashi K; Masuda R
    PLoS One; 2017; 12(2):e0173073. PubMed ID: 28245277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods.
    Hänfling B; Lawson Handley L; Read DS; Hahn C; Li J; Nichols P; Blackman RC; Oliver A; Winfield IJ
    Mol Ecol; 2016 Jul; 25(13):3101-19. PubMed ID: 27095076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.