BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30265968)

  • 21. Colorimetric plasmon sensors with multilayered metallic nanoparticle sheets.
    Shinohara S; Tanaka D; Okamoto K; Tamada K
    Phys Chem Chem Phys; 2015 Jul; 17(28):18606-12. PubMed ID: 26113242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles.
    Wu C; Xiong C; Wang L; Lan C; Ling L
    Analyst; 2010 Oct; 135(10):2682-7. PubMed ID: 20820488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A colorimetric assay for measuring iodide using Au@Ag core-shell nanoparticles coupled with Cu(2+).
    Zeng J; Cao Y; Lu CH; Wang XD; Wang Q; Wen CY; Qu JB; Yuan C; Yan ZF; Chen X
    Anal Chim Acta; 2015 Sep; 891():269-76. PubMed ID: 26388386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sucrose capped gold nanoparticles as a plasmonic chemical sensor based on non-covalent interactions: Application for selective detection of vitamins B
    Shrivas K; Nirmalkar N; Thakur SS; Deb MK; Shinde SS; Shankar R
    Food Chem; 2018 Jun; 250():14-21. PubMed ID: 29412903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colorimetric and visual determination of iodide ions via morphology transition of gold nanobipyramids.
    Liu M; Fu X; Lu M; Liu J; Xie H; Wei P; Zhang W; Xie Y; Qi Y
    Anal Biochem; 2023 Apr; 666():115077. PubMed ID: 36754136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced LSPR performance of graphene nanoribbons-silver nanoparticles hybrid as a colorimetric sensor for sequential detection of dopamine and glutathione.
    Rostami S; Mehdinia A; Niroumand R; Jabbari A
    Anal Chim Acta; 2020 Jul; 1120():11-23. PubMed ID: 32475387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing.
    Loiseau A; Asila V; Boitel-Aullen G; Lam M; Salmain M; Boujday S
    Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31185689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor.
    Huang D; Hu T; Chen N; Zhang W; Di J
    Anal Chim Acta; 2014 May; 825():51-6. PubMed ID: 24767150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid.
    Rostami S; Mehdinia A; Jabbari A
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 180():204-210. PubMed ID: 28292703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A facile and green strategy for the synthesis of Au, Ag and Au-Ag alloy nanoparticles using aerial parts of R. hypocrateriformis extract and their biological evaluation.
    Godipurge SS; Yallappa S; Biradar NJ; Biradar JS; Dhananjaya BL; Hegde G; Jagadish K; Hegde G
    Enzyme Microb Technol; 2016 Dec; 95():174-184. PubMed ID: 27866613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogels Incorporating Au@Polydopamine Nanoparticles: Robust Performance for Optical Sensing.
    Zhang J; Mou L; Jiang X
    Anal Chem; 2018 Oct; 90(19):11423-11430. PubMed ID: 30191718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silver nanoparticles-based localized surface plasmon resonance biosensor for Escherichia coli detection.
    Mahmudin L; Wulandani R; Riswan M; Kurnia Sari E; Dwi Jayanti P; Syahrul Ulum M; Arifin M; Suharyadi E
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 311():123985. PubMed ID: 38316074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An optoelectronic tongue based on an array of gold and silver nanoparticles for analysis of natural, synthetic and biological antioxidants.
    Bordbar MM; Hemmateenejad B; Tashkhourian J; Nami-Ana SF
    Mikrochim Acta; 2018 Oct; 185(10):493. PubMed ID: 30284031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colorimetric captopril assay based on oxidative etching-directed morphology control of silver nanoprisms.
    Zhang P; Wang L; Zeng J; Tan J; Long Y; Wang Y
    Mikrochim Acta; 2020 Jan; 187(2):107. PubMed ID: 31915936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Sensing Platform for the Colorimetric Determination of Silver Nanoprisms and Its Application for Hydrogen Peroxide and Glucose Detections Using a Mobile Device Camera.
    Lertvachirapaiboon C; Maruyama T; Baba A; Ekgasit S; Shinbo K; Kato K
    Anal Sci; 2019 Mar; 35(3):271-276. PubMed ID: 30369555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitive detection of glucose based on gold nanoparticles assisted silver mirror reaction.
    Li T; Zhu K; He S; Xia X; Liu S; Wang Z; Jiang X
    Analyst; 2011 Jul; 136(14):2893-6. PubMed ID: 21611638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colorimetric Detection Based on Localized Surface Plasmon Resonance for Determination of Chemicals in Urine.
    Lertvachirapaiboon C; Baba A; Shinbo K; Kato K
    Anal Sci; 2021 Jul; 37(7):929-940. PubMed ID: 33132235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection.
    Li S; Liu J; Lu Y; Zhu L; Li C; Hu L; Li J; Jiang J; Low S; Liu Q
    Biosens Bioelectron; 2018 Oct; 117():32-39. PubMed ID: 29885577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface plasmon resonance of gold nanoparticles as a colorimetric sensor for indirect detection of Cefixime.
    Masoudyfar Z; Elhami S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():234-238. PubMed ID: 30553146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.