These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30266150)

  • 1. Integrating Models of Interval Timing and Reinforcement Learning.
    Petter EA; Gershman SJ; Meck WH
    Trends Cogn Sci; 2018 Oct; 22(10):911-922. PubMed ID: 30266150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adapting the flow of time with dopamine.
    Mikhael JG; Gershman SJ
    J Neurophysiol; 2019 May; 121(5):1748-1760. PubMed ID: 30864882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addiction as a computational process gone awry.
    Redish AD
    Science; 2004 Dec; 306(5703):1944-7. PubMed ID: 15591205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time representation in reinforcement learning models of the basal ganglia.
    Gershman SJ; Moustafa AA; Ludvig EA
    Front Comput Neurosci; 2014; 7():194. PubMed ID: 24409138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAwSu: an integrated model of associative and reinforcement learning.
    Veksler VD; Myers CW; Gluck KA
    Cogn Sci; 2014 Apr; 38(3):580-98. PubMed ID: 24460979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.
    Zsuga J; Biro K; Papp C; Tajti G; Gesztelyi R
    Behav Neurosci; 2016 Feb; 130(1):6-18. PubMed ID: 26795580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homeostatic reinforcement learning for integrating reward collection and physiological stability.
    Keramati M; Gutkin B
    Elife; 2014 Dec; 3():. PubMed ID: 25457346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Belief state representation in the dopamine system.
    Babayan BM; Uchida N; Gershman SJ
    Nat Commun; 2018 May; 9(1):1891. PubMed ID: 29760401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior.
    Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY
    Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of CAMKII in reinforcement learning: a computational model of glutamate and dopamine signaling pathways.
    Wanjerkhede SM; Bapi RS
    Biol Cybern; 2011 Jun; 104(6):397-424. PubMed ID: 21701878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting psychosis across diagnostic boundaries: Behavioral and computational modeling evidence for impaired reinforcement learning in schizophrenia and bipolar disorder with a history of psychosis.
    Strauss GP; Thaler NS; Matveeva TM; Vogel SJ; Sutton GP; Lee BG; Allen DN
    J Abnorm Psychol; 2015 Aug; 124(3):697-708. PubMed ID: 25894442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexing signals in reinforcement learning with internal models and dopamine.
    Nakahara H
    Curr Opin Neurobiol; 2014 Apr; 25():123-9. PubMed ID: 24463329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework.
    Gershman SJ; Daw ND
    Annu Rev Psychol; 2017 Jan; 68():101-128. PubMed ID: 27618944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novelty and Inductive Generalization in Human Reinforcement Learning.
    Gershman SJ; Niv Y
    Top Cogn Sci; 2015 Jul; 7(3):391-415. PubMed ID: 25808176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Successor Representation: Its Computational Logic and Neural Substrates.
    Gershman SJ
    J Neurosci; 2018 Aug; 38(33):7193-7200. PubMed ID: 30006364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement learning and human behavior.
    Shteingart H; Loewenstein Y
    Curr Opin Neurobiol; 2014 Apr; 25():93-8. PubMed ID: 24709606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.