These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 30266259)
1. Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus. Yaguchi J; Yamazaki A; Yaguchi S Dev Biol; 2018 Dec; 444(1):1-8. PubMed ID: 30266259 [TBL] [Abstract][Full Text] [Related]
2. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus. Tsironis I; Paganos P; Gouvi G; Tsimpos P; Stamopoulou A; Arnone MI; Flytzanis CN Dev Biol; 2021 Jul; 475():131-144. PubMed ID: 33484706 [TBL] [Abstract][Full Text] [Related]
3. cis-Regulatory analysis for later phase of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos. Yamazaki A; Yamamoto A; Yaguchi J; Yaguchi S Genesis; 2019 Jun; 57(6):e23302. PubMed ID: 31025827 [TBL] [Abstract][Full Text] [Related]
4. Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm. Yaguchi J; Takeda N; Inaba K; Yaguchi S PLoS Genet; 2016 Apr; 12(4):e1006001. PubMed ID: 27101101 [TBL] [Abstract][Full Text] [Related]
5. bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo. Yaguchi S; Yaguchi J; Inaba K Sci Rep; 2014 Oct; 4():6852. PubMed ID: 25358387 [TBL] [Abstract][Full Text] [Related]
6. Wnt signaling in the early sea urchin embryo. Kumburegama S; Wikramanayake AH Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711 [TBL] [Abstract][Full Text] [Related]
7. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos. Range RC; Angerer RC; Angerer LM PLoS Biol; 2013; 11(1):e1001467. PubMed ID: 23335859 [TBL] [Abstract][Full Text] [Related]
8. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. Yaguchi S; Yaguchi J; Angerer RC; Angerer LM Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656 [TBL] [Abstract][Full Text] [Related]
9. Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos. Range RC Dev Biol; 2018 Dec; 444(2):83-92. PubMed ID: 30332609 [TBL] [Abstract][Full Text] [Related]
10. Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling. Peng CJ; Wikramanayake AH PLoS One; 2013; 8(11):e80693. PubMed ID: 24236196 [TBL] [Abstract][Full Text] [Related]
11. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans. Bergeron KF; Xu X; Brandhorst BP Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656 [TBL] [Abstract][Full Text] [Related]
12. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo. Range RC; Wei Z Development; 2016 May; 143(9):1523-33. PubMed ID: 26952978 [TBL] [Abstract][Full Text] [Related]
13. ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo. Yaguchi S; Yaguchi J; Wei Z; Shiba K; Angerer LM; Inaba K Dev Biol; 2010 Dec; 348(1):67-75. PubMed ID: 20875818 [TBL] [Abstract][Full Text] [Related]
14. Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos. Piacentino ML; Ramachandran J; Bradham CA Development; 2015 Mar; 142(5):943-52. PubMed ID: 25633352 [TBL] [Abstract][Full Text] [Related]
15. Expression patterns of three Par-related genes in sea urchin embryos. Shiomi K; Yamaguchi M Gene Expr Patterns; 2008 May; 8(5):323-30. PubMed ID: 18316248 [TBL] [Abstract][Full Text] [Related]
17. Spatio-temporal expression of a Netrin homolog in the sea urchin Hemicentrotus pulcherrimus (HpNetrin) during serotonergic axon extension. Katow H Int J Dev Biol; 2008; 52(8):1077-88. PubMed ID: 18956340 [TBL] [Abstract][Full Text] [Related]
18. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo. Range R; Lepage T Dev Biol; 2011 Sep; 357(2):440-9. PubMed ID: 21782809 [TBL] [Abstract][Full Text] [Related]
19. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587 [TBL] [Abstract][Full Text] [Related]
20. Fez function is required to maintain the size of the animal plate in the sea urchin embryo. Yaguchi S; Yaguchi J; Wei Z; Jin Y; Angerer LM; Inaba K Development; 2011 Oct; 138(19):4233-43. PubMed ID: 21852402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]