BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30266317)

  • 1. C. elegans Development and Activity Test detects mammalian developmental neurotoxins.
    Hunt PR; Olejnik N; Bailey KD; Vaught CA; Sprando RL
    Food Chem Toxicol; 2018 Nov; 121():583-592. PubMed ID: 30266317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use.
    Aschner M; Ceccatelli S; Daneshian M; Fritsche E; Hasiwa N; Hartung T; Hogberg HT; Leist M; Li A; Mundi WR; Padilla S; Piersma AH; Bal-Price A; Seiler A; Westerink RH; Zimmer B; Lein PJ
    ALTEX; 2017; 34(1):49-74. PubMed ID: 27452664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the larvae nematode Caenorhabditis elegans to evaluate neurobehavioral toxicity to metallic salts.
    Xing X; Guo Y; Wang D
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1819-23. PubMed ID: 19573919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C. elegans as a model in developmental neurotoxicology.
    Ruszkiewicz JA; Pinkas A; Miah MR; Weitz RL; Lawes MJA; Akinyemi AJ; Ijomone OM; Aschner M
    Toxicol Appl Pharmacol; 2018 Sep; 354():126-135. PubMed ID: 29550512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro developmental neurotoxicity (DNT) testing: relevant models and endpoints.
    Bal-Price AK; Hogberg HT; Buzanska L; Lenas P; van Vliet E; Hartung T
    Neurotoxicology; 2010 Sep; 31(5):545-54. PubMed ID: 19969020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The DNT-EST: a predictive embryonic stem cell-based assay for developmental neurotoxicity testing in vitro.
    Hayess K; Riebeling C; Pirow R; Steinfath M; Sittner D; Slawik B; Luch A; Seiler AE
    Toxicology; 2013 Dec; 314(1):135-47. PubMed ID: 24096155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental neurotoxicity - challenges in the 21st century and in vitro opportunities.
    Smirnova L; Hogberg HT; Leist M; Hartung T
    ALTEX; 2014; 31(2):129-56. PubMed ID: 24687333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity.
    Collins ES; Hessel EVS; Hughes S
    Neurotoxicology; 2024 May; 102():48-57. PubMed ID: 38552718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans.
    Wang D; Xing X
    J Environ Sci (China); 2008; 20(9):1132-7. PubMed ID: 19143322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. International STakeholder NETwork (ISTNET) for creating a developmental neurotoxicity testing (DNT) roadmap for regulatory purposes.
    Crofton K; Fritsche E; Ylikomi T; Bal-Price A
    ALTEX; 2014; 31(2):223-4. PubMed ID: 24794006
    [No Abstract]   [Full Text] [Related]  

  • 11. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans.
    Shi W; Wen H; Lu Y; Shi Y; Lin B; Qin J
    Lab Chip; 2010 Nov; 10(21):2855-63. PubMed ID: 20882233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preliminary study on the neurotoxic mechanism of harmine in Caenorhabditis elegans.
    Sun Q; Liu C; Jiang K; Fang Y; Kong C; Fu J; Liu Y
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Jul; 245():109038. PubMed ID: 33794375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity.
    Ryan KR; Sirenko O; Parham F; Hsieh JH; Cromwell EF; Tice RR; Behl M
    Neurotoxicology; 2016 Mar; 53():271-281. PubMed ID: 26854185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caenorhabditis elegans as a model in developmental toxicology.
    Boyd WA; Smith MV; Freedman JH
    Methods Mol Biol; 2012; 889():15-24. PubMed ID: 22669657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biological toxicity of heavy metals to Caenorhabditis elegans].
    Huang YE; Zhang N; Jiang YX; Guo W; Li CP
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2015 Jun; 27(3):290-4. PubMed ID: 26510363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nematode C. elegans as an animal model to explore toxicology in vivo: solid and axenic growth culture conditions and compound exposure parameters.
    Nass R; Hamza I
    Curr Protoc Toxicol; 2007 Feb; Chapter 1():Unit1.9. PubMed ID: 20922756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Meta regression analysis of five heavy metal biotoxicity effects on
    Yue-E H; Chao-Pin L; Nan Z
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Mar; 28(2):172-177. PubMed ID: 29469295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Caenorhabditis elegans (nematode) and Danio rerio embryo (zebrafish) as model systems to screen for developmental and reproductive toxicity of Piperazine compounds.
    Racz PI; Wildwater M; Rooseboom M; Kerkhof E; Pieters R; Yebra-Pimentel ES; Dirks RP; Spaink HP; Smulders C; Whale GF
    Toxicol In Vitro; 2017 Oct; 44():11-16. PubMed ID: 28595837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans.
    Anderson GL; Boyd WA; Williams PL
    Environ Toxicol Chem; 2001 Apr; 20(4):833-8. PubMed ID: 11345460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae.
    Selderslaghs IW; Hooyberghs J; Blust R; Witters HE
    Neurotoxicol Teratol; 2013; 37():44-56. PubMed ID: 23357511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.