BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30266423)

  • 1. Metallic-semiconducting junctions create sensing hot-spots in carbon nanotube FET aptasensors near percolation.
    Thanihaichelvan M; Browning LA; Dierkes MP; Reyes RM; Kralicek AV; Carraher C; Marlow CA; Plank NOV
    Biosens Bioelectron; 2019 Apr; 130():408-413. PubMed ID: 30266423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of crossed junctions of semiconducting and metallic carbon nanotubes: a CNT-gated CNT-FET.
    Lee DS; Svensson J; Lee SW; Park YW; Campbell EE
    J Nanosci Nanotechnol; 2006 May; 6(5):1325-30. PubMed ID: 16792360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data on liquid gated CNT network FETs on flexible substrates.
    Thanihaichelvan M; Browning LA; Dierkes MP; Reyes RM; Kralicek AV; Carraher C; Marlow CA; Plank NOV
    Data Brief; 2018 Dec; 21():276-283. PubMed ID: 30364623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors.
    Lee SY; Lee SW; Kim SM; Yu WJ; Jo YW; Lee YH
    ACS Nano; 2011 Mar; 5(3):2369-75. PubMed ID: 21370895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random CNT network and regioregular poly(3-hexylthiophen) FETs for pH sensing applications: a comparison.
    Münzer AM; Melzer K; Heimgreiter M; Scarpa G
    Biochim Biophys Acta; 2013 Sep; 1830(9):4353-8. PubMed ID: 23395843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical percolation thresholds of semiconducting single-walled carbon nanotube networks in field-effect transistors.
    Jang HK; Jin JE; Choi JH; Kang PS; Kim DH; Kim GT
    Phys Chem Chem Phys; 2015 Mar; 17(10):6874-80. PubMed ID: 25673219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale contacts between carbon nanotubes and metallic pads.
    Peng N; Li H; Zhang Q
    ACS Nano; 2009 Dec; 3(12):4117-21. PubMed ID: 19894695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-Scale Uniform Carbon Nanotube Transistors for Ultrasensitive and Label-Free Detection of Disease Biomarkers.
    Liang Y; Xiao M; Wu D; Lin Y; Liu L; He J; Zhang G; Peng LM; Zhang Z
    ACS Nano; 2020 Jul; 14(7):8866-8874. PubMed ID: 32574035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.
    Li S; Liu C; Hou PX; Sun DM; Cheng HM
    ACS Nano; 2012 Nov; 6(11):9657-61. PubMed ID: 23025663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins of charge noise in carbon nanotube field-effect transistor biosensors.
    Sharf T; Kevek JW; Deborde T; Wardini JL; Minot ED
    Nano Lett; 2012 Dec; 12(12):6380-4. PubMed ID: 23171196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors.
    Maehashi K; Katsura T; Kerman K; Takamura Y; Matsumoto K; Tamiya E
    Anal Chem; 2007 Jan; 79(2):782-7. PubMed ID: 17222052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.
    Brady GJ; Way AJ; Safron NS; Evensen HT; Gopalan P; Arnold MS
    Sci Adv; 2016 Sep; 2(9):e1601240. PubMed ID: 27617293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors.
    Kim JP; Lee BY; Lee J; Hong S; Sim SJ
    Biosens Bioelectron; 2009 Jul; 24(11):3372-8. PubMed ID: 19481922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotube Field-Effect Transistor Biosensor with an Enlarged Gate Area for Ultra-Sensitive Detection of a Lung Cancer Biomarker.
    Li L; Liu X; Wei T; Wang K; Zhao Z; Cao J; Liu Y; Zhang Z
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27299-27306. PubMed ID: 37235561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes.
    Wang C; Badmaev A; Jooyaie A; Bao M; Wang KL; Galatsis K; Zhou C
    ACS Nano; 2011 May; 5(5):4169-76. PubMed ID: 21517104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled electrostatic gating of carbon nanotube FET devices.
    Artyukhin AB; Stadermann M; Friddle RW; Stroeve P; Bakajin O; Noy A
    Nano Lett; 2006 Sep; 6(9):2080-5. PubMed ID: 16968029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apta-biosensors for nonlabeled real time detection of human IgE based on carbon nanotube field effect transistors.
    Kim JP; Hong S; Sim SJ
    J Nanosci Nanotechnol; 2011 May; 11(5):4182-7. PubMed ID: 21780424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of small gold clusters with carbon nanotube bundles: formation of gold atomic chains.
    Deepak J; Pradeep T; Waghmare UV
    J Phys Condens Matter; 2010 Mar; 22(12):125301. PubMed ID: 21389485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.