BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 30266730)

  • 1. Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.
    Conley BE; Intile PJ; Bond DR; Gralnick JA
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes.
    Shi L; Squier TC; Zachara JM; Fredrickson JK
    Mol Microbiol; 2007 Jul; 65(1):12-20. PubMed ID: 17581116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1.
    Schuetz B; Schicklberger M; Kuermann J; Spormann AM; Gescher J
    Appl Environ Microbiol; 2009 Dec; 75(24):7789-96. PubMed ID: 19837833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards electrosynthesis in shewanella: energetics of reversing the mtr pathway for reductive metabolism.
    Ross DE; Flynn JM; Baron DB; Gralnick JA; Bond DR
    PLoS One; 2011 Feb; 6(2):e16649. PubMed ID: 21311751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens.
    Afkar E; Reguera G; Schiffer M; Lovley DR
    BMC Microbiol; 2005 Jul; 5():41. PubMed ID: 16000176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective.
    Shi L; Rosso KM; Zachara JM; Fredrickson JK
    Biochem Soc Trans; 2012 Dec; 40(6):1261-7. PubMed ID: 23176465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1.
    Shi L; Rosso KM; Clarke TA; Richardson DJ; Zachara JM; Fredrickson JK
    Front Microbiol; 2012; 3():50. PubMed ID: 22363328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants.
    Bretschger O; Obraztsova A; Sturm CA; Chang IS; Gorby YA; Reed SB; Culley DE; Reardon CL; Barua S; Romine MF; Zhou J; Beliaev AS; Bouhenni R; Saffarini D; Mansfeld F; Kim BH; Fredrickson JK; Nealson KH
    Appl Environ Microbiol; 2007 Nov; 73(21):7003-12. PubMed ID: 17644630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outer-membrane cytochrome-independent reduction of extracellular electron acceptors in Shewanella oneidensis.
    Bücking C; Piepenbrock A; Kappler A; Gescher J
    Microbiology (Reading); 2012 Aug; 158(Pt 8):2144-2157. PubMed ID: 22493303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1.
    Coursolle D; Gralnick JA
    Mol Microbiol; 2010 Aug; 77(4):995-1008. PubMed ID: 20598084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis.
    Kotloski NJ; Gralnick JA
    mBio; 2013 Jan; 4(1):. PubMed ID: 23322638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm.
    Li DB; Cheng YY; Wu C; Li WW; Li N; Yang ZC; Tong ZH; Yu HQ
    Sci Rep; 2014 Jan; 4():3735. PubMed ID: 24435070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA.
    Gao H; Yang ZK; Barua S; Reed SB; Romine MF; Nealson KH; Fredrickson JK; Tiedje JM; Zhou J
    ISME J; 2009 Aug; 3(8):966-76. PubMed ID: 19387485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of an electron conduit between bacteria and the extracellular environment.
    Hartshorne RS; Reardon CL; Ross D; Nuester J; Clarke TA; Gates AJ; Mills PC; Fredrickson JK; Zachara JM; Shi L; Beliaev AS; Marshall MJ; Tien M; Brantley S; Butt JN; Richardson DJ
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22169-74. PubMed ID: 20018742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic plasticity enables a secondary electron transport pathway in Shewanella oneidensis.
    Schicklberger M; Sturm G; Gescher J
    Appl Environ Microbiol; 2013 Feb; 79(4):1150-9. PubMed ID: 23220953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1.
    Kouzuma A; Hashimoto K; Watanabe K
    FEMS Microbiol Lett; 2012 Jan; 326(1):91-8. PubMed ID: 22092340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens.
    Mehta T; Coppi MV; Childers SE; Lovley DR
    Appl Environ Microbiol; 2005 Dec; 71(12):8634-41. PubMed ID: 16332857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of the Shewanella oneidensis decaheme cytochrome MtrA in the periplasmic stability of the beta-barrel protein MtrB.
    Schicklberger M; Bücking C; Schuetz B; Heide H; Gescher J
    Appl Environ Microbiol; 2011 Feb; 77(4):1520-3. PubMed ID: 21169449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors.
    Beliaev AS; Klingeman DM; Klappenbach JA; Wu L; Romine MF; Tiedje JM; Nealson KH; Fredrickson JK; Zhou J
    J Bacteriol; 2005 Oct; 187(20):7138-45. PubMed ID: 16199584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.