These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30266783)

  • 21. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau.
    Fine ML; King TL; Ali H; Sidker N; Cameron TM
    Proc Biol Sci; 2016 Oct; 283(1841):. PubMed ID: 27798293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Potential Overlapping Roles of the Ear and Lateral Line in Driving "Acoustic" Responses.
    Higgs DM; Radford CA
    Adv Exp Med Biol; 2016; 877():255-70. PubMed ID: 26515318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Movement and sound generation by the toadfish swimbladder.
    Fine ML; Malloy KL; King CB; Mitchell SL; Cameron TM
    J Comp Physiol A; 2001 Jun; 187(5):371-9. PubMed ID: 11529481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What the Toadfish Ear Tells the Toadfish Brain About Sound.
    Edds-Walton PL
    Adv Exp Med Biol; 2016; 877():197-226. PubMed ID: 26515316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Projections to bimodal sites in the torus semicircularis of the toadfish, Opsanus tau.
    Edds-Walton PL; Fay RR
    Brain Behav Evol; 2005; 66(2):73-87. PubMed ID: 15914974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3-D-orientation with the octavolateralis system.
    Bleckmann H
    J Physiol Paris; 2004; 98(1-3):53-65. PubMed ID: 15477022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural recordings from the lateral line in free-swimming toadfish, Opsanus tau.
    Palmer LM; Giuffrida BA; Mensinger AF
    Biol Bull; 2003 Oct; 205(2):216-8. PubMed ID: 14583537
    [No Abstract]   [Full Text] [Related]  

  • 28. Artificial lateral line with biomimetic neuromasts to emulate fish sensing.
    Yang Y; Nguyen N; Chen N; Lockwood M; Tucker C; Hu H; Bleckmann H; Liu C; Jones DL
    Bioinspir Biomim; 2010 Mar; 5(1):16001. PubMed ID: 20061601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
    Goulet J; van Hemmen JL; Jung SN; Chagnaud BP; Scholze B; Engelmann J
    J Neurophysiol; 2012 May; 107(10):2581-93. PubMed ID: 22378175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Call rate of oyster toadfish (Opsanus tau) is affected by aggregate sound level but not by specific vessel passagesa).
    Colbert BR; Popper AN; Bailey H
    J Acoust Soc Am; 2023 Oct; 154(4):2088-2098. PubMed ID: 37787601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneity of neuromasts in a fish without lateral line canals: the pufferfish (
    Li C; Wang X; Wu J; Zhang X; Fan C; Guo H; Song J
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 29997160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic competition in the gulf toadfish Opsanus beta: acoustic tagging.
    Thorson RF; Fine ML
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2302-7. PubMed ID: 12051450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-intensity ultrasound activates vestibular otolith organs through acoustic radiation force.
    Iversen MM; Christensen DA; Parker DL; Holman HA; Chen J; Frerck MJ; Rabbitt RD
    J Acoust Soc Am; 2017 Jun; 141(6):4209. PubMed ID: 28618821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An implantable two axis micromanipulator made with a 3D printer for recording neural activity in free-swimming fish.
    Rogers LS; Van Wert JC; Mensinger AF
    J Neurosci Methods; 2017 Aug; 288():29-33. PubMed ID: 28648718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of evoked potentials to determine sensory sub-modality contributions to acoustic and hydrodynamic sensing.
    Kibele CS; Montgomery JC; Radford CA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Dec; 205(6):855-865. PubMed ID: 31686133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local acoustic particle motion guides sound-source localization behavior in the plainfin midshipman fish, Porichthys notatus.
    Zeddies DG; Fay RR; Gray MD; Alderks PW; Acob A; Sisneros JA
    J Exp Biol; 2012 Jan; 215(Pt 1):152-60. PubMed ID: 22162863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustical properties of the swimbladder in the oyster toadfish Opsanus tau.
    Fine ML; King CB; Cameron TM
    J Exp Biol; 2009 Nov; 212(Pt 21):3542-52. PubMed ID: 19837896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Object localization through the lateral line system of fish: theory and experiment.
    Goulet J; Engelmann J; Chagnaud BP; Franosch JM; Suttner MD; van Hemmen JL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jan; 194(1):1-17. PubMed ID: 18060550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directionality and frequency tuning of primary saccular afferents of a vocal fish, the plainfin midshipman (Porichthys notatus).
    Weeg MS; Fay RR; Bass AH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Sep; 188(8):631-41. PubMed ID: 12355239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism for directional hearing in fish.
    Veith J; Chaigne T; Svanidze A; Dressler LE; Hoffmann M; Gerhardt B; Judkewitz B
    Nature; 2024 Jul; 631(8019):118-124. PubMed ID: 38898274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.