These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 30266798)
1. Cooperation of loss of Le Magnen C; Virk RK; Dutta A; Kim JY; Panja S; Lopez-Bujanda ZA; Califano A; Drake CG; Mitrofanova A; Abate-Shen C Dis Model Mech; 2018 Nov; 11(11):. PubMed ID: 30266798 [TBL] [Abstract][Full Text] [Related]
2. Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Song H; Zhang B; Watson MA; Humphrey PA; Lim H; Milbrandt J Oncogene; 2009 Sep; 28(37):3307-19. PubMed ID: 19597465 [TBL] [Abstract][Full Text] [Related]
3. Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Ouyang X; DeWeese TL; Nelson WG; Abate-Shen C Cancer Res; 2005 Aug; 65(15):6773-9. PubMed ID: 16061659 [TBL] [Abstract][Full Text] [Related]
4. Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Kim MJ; Bhatia-Gaur R; Banach-Petrosky WA; Desai N; Wang Y; Hayward SW; Cunha GR; Cardiff RD; Shen MM; Abate-Shen C Cancer Res; 2002 Jun; 62(11):2999-3004. PubMed ID: 12036903 [TBL] [Abstract][Full Text] [Related]
5. RAMP1 is a direct NKX3.1 target gene up-regulated in prostate cancer that promotes tumorigenesis. Logan M; Anderson PD; Saab ST; Hameed O; Abdulkadir SA Am J Pathol; 2013 Sep; 183(3):951-63. PubMed ID: 23867798 [TBL] [Abstract][Full Text] [Related]
6. Loss of Nkx3.1 expression in bacterial prostatitis: a potential link between inflammation and neoplasia. Khalili M; Mutton LN; Gurel B; Hicks JL; De Marzo AM; Bieberich CJ Am J Pathol; 2010 May; 176(5):2259-68. PubMed ID: 20363913 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional regulation of the Xie Q; Wang ZA J Biol Chem; 2017 Aug; 292(33):13521-13530. PubMed ID: 28679531 [TBL] [Abstract][Full Text] [Related]
8. Roles for Nkx3.1 in prostate development and cancer. Bhatia-Gaur R; Donjacour AA; Sciavolino PJ; Kim M; Desai N; Young P; Norton CR; Gridley T; Cardiff RD; Cunha GR; Abate-Shen C; Shen MM Genes Dev; 1999 Apr; 13(8):966-77. PubMed ID: 10215624 [TBL] [Abstract][Full Text] [Related]
9. Antioxidant treatment promotes prostate epithelial proliferation in Nkx3.1 mutant mice. Martinez EE; Anderson PD; Logan M; Abdulkadir SA PLoS One; 2012; 7(10):e46792. PubMed ID: 23077524 [TBL] [Abstract][Full Text] [Related]
10. Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis. Anderson PD; McKissic SA; Logan M; Roh M; Franco OE; Wang J; Doubinskaia I; van der Meer R; Hayward SW; Eischen CM; Eltoum IE; Abdulkadir SA J Clin Invest; 2012 May; 122(5):1907-19. PubMed ID: 22484818 [TBL] [Abstract][Full Text] [Related]
11. Genetic interaction between Tmprss2-ERG gene fusion and Nkx3.1-loss does not enhance prostate tumorigenesis in mouse models. Linn DE; Bronson RT; Li Z PLoS One; 2015; 10(3):e0120628. PubMed ID: 25780911 [TBL] [Abstract][Full Text] [Related]
12. Expression profile of an androgen regulated prostate specific homeobox gene NKX3.1 in primary prostate cancer. Xu LL; Srikantan V; Sesterhenn IA; Augustus M; Dean R; Moul JW; Carter KC; Srivastava S J Urol; 2000 Mar; 163(3):972-9. PubMed ID: 10688034 [TBL] [Abstract][Full Text] [Related]
13. Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Kwon OJ; Zhang L; Ittmann MM; Xin L Proc Natl Acad Sci U S A; 2014 Feb; 111(5):E592-600. PubMed ID: 24367088 [TBL] [Abstract][Full Text] [Related]
14. Metformin Overcomes the Consequences of NKX3.1 Loss to Suppress Prostate Cancer Progression. Papachristodoulou A; Heidegger I; Virk RK; Di Bernardo M; Kim JY; Laplaca C; Picech F; Schäfer G; De Castro GJ; Hibshoosh H; Loda M; Klocker H; Rubin MA; Zheng T; Benson MC; McKiernan JM; Dutta A; Abate-Shen C Eur Urol; 2024 Apr; 85(4):361-372. PubMed ID: 37659962 [TBL] [Abstract][Full Text] [Related]
15. Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Abate-Shen C; Shen MM; Gelmann E Differentiation; 2008 Jul; 76(6):717-27. PubMed ID: 18557759 [TBL] [Abstract][Full Text] [Related]
16. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Tan PY; Chang CW; Chng KR; Wansa KD; Sung WK; Cheung E Mol Cell Biol; 2012 Jan; 32(2):399-414. PubMed ID: 22083957 [TBL] [Abstract][Full Text] [Related]
17. NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation. Papachristodoulou A; Rodriguez-Calero A; Panja S; Margolskee E; Virk RK; Milner TA; Martina LP; Kim JY; Di Bernardo M; Williams AB; Maliza EA; Caputo JM; Haas C; Wang V; De Castro GJ; Wenske S; Hibshoosh H; McKiernan JM; Shen MM; Rubin MA; Mitrofanova A; Dutta A; Abate-Shen C Cancer Discov; 2021 Sep; 11(9):2316-2333. PubMed ID: 33893149 [TBL] [Abstract][Full Text] [Related]
18. A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. He WW; Sciavolino PJ; Wing J; Augustus M; Hudson P; Meissner PS; Curtis RT; Shell BK; Bostwick DG; Tindall DJ; Gelmann EP; Abate-Shen C; Carter KC Genomics; 1997 Jul; 43(1):69-77. PubMed ID: 9226374 [TBL] [Abstract][Full Text] [Related]
19. TNFα-mediated loss of β-catenin/E-cadherin association and subsequent increase in cell migration is partially restored by NKX3.1 expression in prostate cells. Debelec-Butuner B; Alapinar C; Ertunc N; Gonen-Korkmaz C; Yörükoğlu K; Korkmaz KS PLoS One; 2014; 9(10):e109868. PubMed ID: 25360740 [TBL] [Abstract][Full Text] [Related]
20. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Bowen C; Bubendorf L; Voeller HJ; Slack R; Willi N; Sauter G; Gasser TC; Koivisto P; Lack EE; Kononen J; Kallioniemi OP; Gelmann EP Cancer Res; 2000 Nov; 60(21):6111-5. PubMed ID: 11085535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]