BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30266901)

  • 1. Intracellular nucleosomes constrain a DNA linking number difference of -1.26 that reconciles the Lk paradox.
    Segura J; Joshi RS; Díaz-Ingelmo O; Valdés A; Dyson S; Martínez-García B; Roca J
    Nat Commun; 2018 Sep; 9(1):3989. PubMed ID: 30266901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleosomal DNA has topological memory.
    Segura J; Díaz-Ingelmo O; Martínez-García B; Ayats-Fraile A; Nikolaou C; Roca J
    Nat Commun; 2024 May; 15(1):4526. PubMed ID: 38806488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A twist defect mechanism for ATP-dependent translocation of nucleosomal DNA.
    Winger J; Nodelman IM; Levendosky RF; Bowman GD
    Elife; 2018 May; 7():. PubMed ID: 29809147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topoisomerase II, not topoisomerase I, is the proficient relaxase of nucleosomal DNA.
    Salceda J; Fernández X; Roca J
    EMBO J; 2006 Jun; 25(11):2575-83. PubMed ID: 16710299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Topology and Global Architecture of Point Centromeres.
    Díaz-Ingelmo O; Martínez-García B; Segura J; Valdés A; Roca J
    Cell Rep; 2015 Oct; 13(4):667-677. PubMed ID: 26489472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleosome dynamics. III. Histone tail-dependent fluctuation of nucleosomes between open and closed DNA conformations. Implications for chromatin dynamics and the linking number paradox. A relaxation study of mononucleosomes on DNA minicircles.
    De Lucia F; Alilat M; Sivolob A; Prunell A
    J Mol Biol; 1999 Jan; 285(3):1101-19. PubMed ID: 9918719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nucleosome distortion on the linking deficiency in relaxed minichromosomes.
    White JH; Gallo R; Bauer WR
    J Mol Biol; 1989 May; 207(1):193-9. PubMed ID: 2544736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2.
    Zofall M; Persinger J; Bartholomew B
    Mol Cell Biol; 2004 Nov; 24(22):10047-57. PubMed ID: 15509805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical and functional interactions between nucleosomes and Rad27, a critical component of DNA processing during DNA metabolism.
    Kwon B; Munashingha PR; Shin YK; Lee CH; Li B; Seo YS
    FEBS J; 2016 Dec; 283(23):4247-4262. PubMed ID: 27759916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin reconstitution on small DNA rings. II. DNA supercoiling on the nucleosome.
    Zivanovic Y; Goulet I; Revet B; Le Bret M; Prunell A
    J Mol Biol; 1988 Mar; 200(2):267-90. PubMed ID: 2836595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SWI/SNF chromatin remodeling requires changes in DNA topology.
    Gavin I; Horn PJ; Peterson CL
    Mol Cell; 2001 Jan; 7(1):97-104. PubMed ID: 11172715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of nucleosomal DNA in a cell-free extract from wild-type and top1- strains of Ustilago maydis.
    Dutta S; Gerhold D; Kmiec EB
    Mol Gen Genet; 1995 Oct; 248(6):675-85. PubMed ID: 7476870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylation and accessibility of rDNA chromatin in Saccharomyces cerevisiae in (Delta)top1 and (Delta)sir2 mutants.
    Cioci F; Vogelauer M; Camilloni G
    J Mol Biol; 2002 Sep; 322(1):41-52. PubMed ID: 12215413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleosomes represent a physical barrier for cleavage activity of DNA topoisomerase I in vivo.
    Di Felice F; Chiani F; Camilloni G
    Biochem J; 2008 Feb; 409(3):651-6. PubMed ID: 17967163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome.
    Albert I; Mavrich TN; Tomsho LP; Qi J; Zanton SJ; Schuster SC; Pugh BF
    Nature; 2007 Mar; 446(7135):572-6. PubMed ID: 17392789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide mapping of nucleosomes in yeast using paired-end sequencing.
    Cole HA; Howard BH; Clark DJ
    Methods Enzymol; 2012; 513():145-68. PubMed ID: 22929768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo mapping of nucleosomes using psoralen-DNA crosslinking and primer extension.
    Wellinger RE; Sogo JM
    Nucleic Acids Res; 1998 Mar; 26(6):1544-5. PubMed ID: 9490804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genome folding mechanism in yeast.
    Kimura H; Shimooka Y; Nishikawa J; Miura O; Sugiyama S; Yamada S; Ohyama T
    J Biochem; 2013 Aug; 154(2):137-47. PubMed ID: 23620598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins.
    Quintales L; Soriano I; Vázquez E; Segurado M; Antequera F
    Open Biol; 2015 Apr; 5(4):140218. PubMed ID: 25854683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast.
    Fedor MJ; Lue NF; Kornberg RD
    J Mol Biol; 1988 Nov; 204(1):109-27. PubMed ID: 3063825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.