These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30266904)

  • 1. Temporal genetic association and temporal genetic causality methods for dissecting complex networks.
    Lin L; Chen Q; Hirsch JP; Yoo S; Yeung K; Bumgarner RE; Tu Z; Schadt EE; Zhu J
    Nat Commun; 2018 Sep; 9(1):3980. PubMed ID: 30266904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causal inference in biology networks with integrated belief propagation.
    Chang R; Karr JR; Schadt EE
    Pac Symp Biocomput; 2015; ():359-70. PubMed ID: 25592596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
    Ludl AA; Michoel T
    Mol Omics; 2021 Apr; 17(2):241-251. PubMed ID: 33438713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-confidence discovery of genetic network regulators in expression quantitative trait loci data.
    Duarte CW; Zeng ZB
    Genetics; 2011 Mar; 187(3):955-64. PubMed ID: 21212238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time Delayed Causal Gene Regulatory Network Inference with Hidden Common Causes.
    Lo LY; Wong ML; Lee KH; Leung KS
    PLoS One; 2015; 10(9):e0138596. PubMed ID: 26394325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
    Kulp DC; Jagalur M
    BMC Genomics; 2006 May; 7():125. PubMed ID: 16719927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics Using Scribe.
    Qiu X; Rahimzamani A; Wang L; Ren B; Mao Q; Durham T; McFaline-Figueroa JL; Saunders L; Trapnell C; Kannan S
    Cell Syst; 2020 Mar; 10(3):265-274.e11. PubMed ID: 32135093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning genetic regulatory network connectivity from time series data.
    Barker NA; Myers CJ; Kuwahara H
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):152-65. PubMed ID: 21071804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlated Discretized Expression score: a method for identifying gene interaction networks from time course microarray expression data.
    Larsen P; Almasri E; Chen G; Dai Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5842-5. PubMed ID: 17946340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of gene networks with hybrid approach from expression profile and gene ontology.
    Jing L; Ng MK; Liu Y
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):107-18. PubMed ID: 19789116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based multiple locus linkage analysis of expression traits.
    Pan W
    Bioinformatics; 2009 Jun; 25(11):1390-6. PubMed ID: 19336446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression.
    Sugimoto N; Iba H
    Genome Inform; 2004; 15(2):121-30. PubMed ID: 15706498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of causal networks on the structure and stability of resource allocation trait correlations.
    Gove RP; Chen W; Zweber NB; Erwin R; Rychtář J; Remington DL
    J Theor Biol; 2012 Jan; 293():1-14. PubMed ID: 22004994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular analysis of the probabilistic genetic interaction network.
    Hou L; Wang L; Qian M; Li D; Tang C; Zhu Y; Deng M; Li F
    Bioinformatics; 2011 Mar; 27(6):853-9. PubMed ID: 21278184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data.
    Chan SC; Zhang L; Wu HC; Tsui KM
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):123-35. PubMed ID: 26357083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Windowed Granger causal inference strategy improves discovery of gene regulatory networks.
    Finkle JD; Wu JJ; Bagheri N
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2252-2257. PubMed ID: 29440433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HiNO: an approach for inferring hierarchical organization from regulatory networks.
    Hartsperger ML; Strache R; Stümpflen V
    PLoS One; 2010 Nov; 5(11):e13698. PubMed ID: 21079808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies.
    Blum CF; Heramvand N; Khonsari AS; Kollmann M
    Nat Commun; 2018 Jan; 9(1):133. PubMed ID: 29317620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.