These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30267024)

  • 21. A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography.
    Boi A; Jamthikar AD; Saba L; Gupta D; Sharma A; Loi B; Laird JR; Khanna NN; Suri JS
    Curr Atheroscler Rep; 2018 May; 20(7):33. PubMed ID: 29781047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of plaque structure and composition using OCT combined with two-photon luminescence (TPL) imaging.
    Wang T; McElroy A; Halaney D; Vela D; Fung E; Hossain S; Phipps J; Wang B; Yin B; Feldman MD; Milner TE
    Lasers Surg Med; 2015 Aug; 47(6):485-94. PubMed ID: 26018531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of Intracoronary Plaque Imaging with Intravascular Ultrasound, Optical Coherence Tomography, and Near-Infrared Spectroscopy in Patients with Coronary Artery Disease.
    Hoang V; Grounds J; Pham D; Virani S; Hamzeh I; Qureshi AM; Lakkis N; Alam M
    Curr Atheroscler Rep; 2016 Sep; 18(9):57. PubMed ID: 27485540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive Assessment of High-Risk Plaques by Dual-Modal Imaging Catheter in Coronary Artery.
    Kim S; Nam HS; Lee MW; Kim HJ; Kang WJ; Song JW; Han J; Kang DO; Oh WY; Yoo H; Kim JW
    JACC Basic Transl Sci; 2021 Dec; 6(12):948-960. PubMed ID: 35024500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macrophage uptake switches on OCT contrast of superparamagnetic nanoparticles for imaging of atherosclerotic plaques.
    Ariza de Schellenberger A; Poller WC; Stangl V; Landmesser U; Schellenberger E
    Int J Nanomedicine; 2018; 13():7905-7913. PubMed ID: 30538467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo imaging of complicated atherosclerotic plaque - role of optical coherence tomography (OCT).
    Spînu M; Olinic DM; Olinic M; Homorodean C
    Rom J Morphol Embryol; 2018; 59(2):469-478. PubMed ID: 30173250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-parameter characterization of atherosclerotic plaques based on optical coherence tomography, photoacoustic and viscoelasticity imaging.
    Wang P; Chen Z; Xing D
    Opt Express; 2020 Apr; 28(9):13761-13774. PubMed ID: 32403844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intravascular Optical Coherence Tomography for Characterization of Atherosclerosis with a 1.7 Micron Swept-Source Laser.
    Li Y; Jing J; Heidari E; Zhu J; Qu Y; Chen Z
    Sci Rep; 2017 Nov; 7(1):14525. PubMed ID: 29109462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multimodal Imaging-Assisted Intravascular Theranostic Photoactivation on Atherosclerotic Plaque.
    Kim JH; Song JW; Kim YH; Kim HJ; Kim RH; Park YH; Nam HS; Kang DO; Yoo H; Park K; Kim JW
    Circ Res; 2024 Aug; 135(5):e114-e132. PubMed ID: 38989585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical Coherence Tomography to Evaluate Plaque Burden and Morphology in Patients With Takotsubo Syndrome.
    Eitel I; Stiermaier T; Graf T; Möller C; Rommel KP; Eitel C; Schuler G; Thiele H; Desch S
    J Am Heart Assoc; 2016 Dec; 5(12):. PubMed ID: 28007746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholesterol crystal as a new feature of coronary vulnerable plaques: An optical coherence tomography study.
    Nishimura S; Ehara S; Hasegawa T; Matsumoto K; Yoshikawa J; Shimada K
    J Cardiol; 2017 Jan; 69(1):253-259. PubMed ID: 27156165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ex Vivo Assessment of Coronary Atherosclerotic Plaque by Grating-Based Phase-Contrast Computed Tomography: Correlation With Optical Coherence Tomography.
    Habbel C; Hetterich H; Willner M; Herzen J; Steigerwald K; Auweter S; Schüller U; Hausleiter J; Massberg S; Reiser M; Pfeiffer F; Saam T; Bamberg F
    Invest Radiol; 2017 Apr; 52(4):223-231. PubMed ID: 28079701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: a comparison with histology.
    Rieber J; Meissner O; Babaryka G; Reim S; Oswald M; Koenig A; Schiele TM; Shapiro M; Theisen K; Reiser MF; Klauss V; Hoffmann U
    Coron Artery Dis; 2006 Aug; 17(5):425-30. PubMed ID: 16845250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of optical coherence tomography and intravascular ultrasound for evaluation of coronary lipid-rich atherosclerotic plaque progression and regression.
    Xie Z; Tian J; Ma L; Du H; Dong N; Hou J; He J; Dai J; Liu X; Pan H; Liu Y; Yu B
    Eur Heart J Cardiovasc Imaging; 2015 Dec; 16(12):1374-80. PubMed ID: 25911116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence Lifetime Imaging Combined with Conventional Intravascular Ultrasound for Enhanced Assessment of Atherosclerotic Plaques: an Ex Vivo Study in Human Coronary Arteries.
    Fatakdawala H; Gorpas D; Bishop JW; Bec J; Ma D; Southard JA; Margulies KB; Marcu L
    J Cardiovasc Transl Res; 2015 Jun; 8(4):253-63. PubMed ID: 25931307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intravascular magnetomotive optical coherence tomography of targeted early-stage atherosclerotic changes in ex vivo hyperlipidemic rabbit aortas.
    Kim J; Ahmad A; Li J; Marjanovic M; Chaney EJ; Suslick KS; Boppart SA
    J Biophotonics; 2016 Jan; 9(1-2):109-16. PubMed ID: 25688525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current clinical applications of coronary optical coherence tomography.
    Kume T; Uemura S
    Cardiovasc Interv Ther; 2018 Jan; 33(1):1-10. PubMed ID: 28710605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multimodal fluorescence lifetime imaging and optical coherence tomography for longitudinal monitoring of tissue-engineered cartilage maturation in a preclinical implantation model.
    Zhou X; Haudenschild AK; Li C; Marcu L
    J Biomed Opt; 2023 Feb; 28(2):026003. PubMed ID: 36818585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Ex vivo assessment of coronary lesions by optical coherence tomography and intravascular ultrasound in comparison with histology results].
    Guo J; Sun L; Chen YD; Tian F; Liu HB; Chen L; Sun ZJ; Ren YH; Jin QH; Liu CF; Han BS; Gai LY; Yang TS
    Zhonghua Xin Xue Guan Bing Za Zhi; 2012 Apr; 40(4):302-6. PubMed ID: 22801308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.