These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30267031)

  • 1. Towards quantitative and multiplexed in vivo functional cancer genomics.
    Winters IP; Murray CW; Winslow MM
    Nat Rev Genet; 2018 Dec; 19(12):741-755. PubMed ID: 30267031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice.
    Weber J; Öllinger R; Friedrich M; Ehmer U; Barenboim M; Steiger K; Heid I; Mueller S; Maresch R; Engleitner T; Gross N; Geumann U; Fu B; Segler A; Yuan D; Lange S; Strong A; de la Rosa J; Esposito I; Liu P; Cadiñanos J; Vassiliou GS; Schmid RM; Schneider G; Unger K; Yang F; Braren R; Heikenwälder M; Varela I; Saur D; Bradley A; Rad R
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13982-7. PubMed ID: 26508638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-Based Positive Screens for Cancer-Related Traits.
    Slipek NJ; Varshney J; Largaespada DA
    Methods Mol Biol; 2019; 1907():137-144. PubMed ID: 30542997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity.
    Winters IP; Chiou SH; Paulk NK; McFarland CD; Lalgudi PV; Ma RK; Lisowski L; Connolly AJ; Petrov DA; Kay MA; Winslow MM
    Nat Commun; 2017 Dec; 8(1):2053. PubMed ID: 29233960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput functional genomics using CRISPR-Cas9.
    Shalem O; Sanjana NE; Zhang F
    Nat Rev Genet; 2015 May; 16(5):299-311. PubMed ID: 25854182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9.
    Shen H; McHale CM; Smith MT; Zhang L
    Mutat Res Rev Mutat Res; 2015; 764():31-42. PubMed ID: 26041264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide CRISPR/Cas9 Screening for Identification of Cancer Genes in Cell Lines.
    Adelmann CH; Wang T; Sabatini DM; Lander ES
    Methods Mol Biol; 2019; 1907():125-136. PubMed ID: 30542996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
    Sun N; Petiwala S; Wang R; Lu C; Hu M; Ghosh S; Hao Y; Miller CP; Chung N
    BMC Genomics; 2019 Mar; 20(1):225. PubMed ID: 30890156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects.
    Gonçalves E; Behan FM; Louzada S; Arnol D; Stronach EA; Yang F; Yusa K; Stegle O; Iorio F; Garnett MJ
    Genome Biol; 2019 Feb; 20(1):27. PubMed ID: 30722791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide CRISPR/Cas9 Screening for High-Throughput Functional Genomics in Human Cells.
    Zhu S; Zhou Y; Wei W
    Methods Mol Biol; 2017; 1656():175-181. PubMed ID: 28808970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of the CRISPR/Cas9 system in murine cancer modeling.
    Zuckermann M; Kawauchi D; Gronych J
    Brief Funct Genomics; 2017 Jan; 16(1):25-33. PubMed ID: 27273122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma.
    Huang J; Chen M; Whitley MJ; Kuo HC; Xu ES; Walens A; Mowery YM; Van Mater D; Eward WC; Cardona DM; Luo L; Ma Y; Lopez OM; Nelson CE; Robinson-Hamm JN; Reddy A; Dave SS; Gersbach CA; Dodd RD; Kirsch DG
    Nat Commun; 2017 Jul; 8():15999. PubMed ID: 28691711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9 therapies in experimental mouse models of cancer.
    Estêvão D; Rios Costa N; da Costa RG; Medeiros R
    Future Oncol; 2018 Aug; 14(20):2083-2095. PubMed ID: 30027767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling.
    Torres-Ruiz R; Rodriguez-Perales S
    Int J Mol Sci; 2015 Sep; 16(9):22151-68. PubMed ID: 26389881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer CRISPR Screens In Vivo.
    Chow RD; Chen S
    Trends Cancer; 2018 May; 4(5):349-358. PubMed ID: 29709259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma.
    Engelholm LH; Riaz A; Serra D; Dagnæs-Hansen F; Johansen JV; Santoni-Rugiu E; Hansen SH; Niola F; Frödin M
    Gastroenterology; 2017 Dec; 153(6):1662-1673.e10. PubMed ID: 28923495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 for cancer research and therapy.
    Zhan T; Rindtorff N; Betge J; Ebert MP; Boutros M
    Semin Cancer Biol; 2019 Apr; 55():106-119. PubMed ID: 29673923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hallmarks of cancer: The CRISPR generation.
    Moses C; Garcia-Bloj B; Harvey AR; Blancafort P
    Eur J Cancer; 2018 Apr; 93():10-18. PubMed ID: 29433054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide approaches for cancer gene discovery.
    Lizardi PM; Forloni M; Wajapeyee N
    Trends Biotechnol; 2011 Nov; 29(11):558-68. PubMed ID: 21757246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.