These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30267099)

  • 1. The Acoustic Environments in Which Older Adults Wear Their Hearing Aids: Insights From Datalogging Sound Environment Classification.
    Humes LE; Rogers SE; Main AK; Kinney DL
    Am J Audiol; 2018 Dec; 27(4):594-603. PubMed ID: 30267099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a Digital Language Processor to Quantify the Auditory Environment and the Effect of Hearing Aids for Adults with Hearing Loss.
    Klein KE; Wu YH; Stangl E; Bentler RA
    J Am Acad Audiol; 2018 Apr; 29(4):279-291. PubMed ID: 29664722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between the acceptance of noise and acoustic environments in young adults with normal hearing: a pilot study.
    Franklin CA; White LJ; Franklin TC; Smith-Olinde L
    J Am Acad Audiol; 2014 Jun; 25(6):584-91. PubMed ID: 25313548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech Perception in Classroom Acoustics by Children With Hearing Loss and Wearing Hearing Aids.
    Iglehart F
    Am J Audiol; 2020 Mar; 29(1):6-17. PubMed ID: 31835909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The benefits of hearing aids and closed captioning for television viewing by older adults with hearing loss.
    Gordon-Salant S; Callahan JS
    Ear Hear; 2009 Aug; 30(4):458-65. PubMed ID: 19444122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smartphone-Based System for Learning and Inferring Hearing Aid Settings.
    Aldaz G; Puria S; Leifer LJ
    J Am Acad Audiol; 2016 Oct; 27(9):732-749. PubMed ID: 27718350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An examination of speech reception thresholds measured in a simulated reverberant cafeteria environment.
    Best V; Keidser G; Buchholz JM; Freeston K
    Int J Audiol; 2015; 54(10):682-90. PubMed ID: 25853616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common Sound Scenarios: A Context-Driven Categorization of Everyday Sound Environments for Application in Hearing-Device Research.
    Wolters F; Smeds K; Schmidt E; Christensen EK; Norup C
    J Am Acad Audiol; 2016 Jul; 27(7):527-40. PubMed ID: 27406660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The performance of an automatic acoustic-based program classifier compared to hearing aid users' manual selection of listening programs.
    Searchfield GD; Linford T; Kobayashi K; Crowhen D; Latzel M
    Int J Audiol; 2018 Mar; 57(3):201-212. PubMed ID: 29069954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Variability in Individual Response to Hearing Aid Signal Processing in Wearable Hearing Aids.
    Souza P; Arehart K; Schoof T; Anderson M; Strori D; Balmert L
    Ear Hear; 2019; 40(6):1280-1292. PubMed ID: 30998547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a "direct-comparison" approach to automatic switching in omnidirectional/directional hearing aids.
    Summers V; Grant KW; Walden BE; Cord MT; Surr RK; Elhilali M
    J Am Acad Audiol; 2008 Oct; 19(9):708-20. PubMed ID: 19418710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construct Validity of the Ecological Momentary Assessment in Audiology Research.
    Wu YH; Stangl E; Zhang X; Bentler RA
    J Am Acad Audiol; 2015; 26(10):872-84. PubMed ID: 26554491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-lowering processing to improve speech-in-noise intelligibility in patients with age-related hearing loss.
    Bruno R; Freni F; Portelli D; Alberti G; Gazia F; Meduri A; Galletti F; Galletti B
    Eur Arch Otorhinolaryngol; 2021 Oct; 278(10):3697-3706. PubMed ID: 33083865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of APHAB norms for WDRC hearing aids and comparisons with original norms.
    Johnson JA; Cox RM; Alexander GC
    Ear Hear; 2010 Feb; 31(1):47-55. PubMed ID: 19692903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Acoustic Scenarios in Multichannel Loudspeaker Systems for Hearing Aid Evaluation.
    Grimm G; Kollmeier B; Hohmann V
    J Am Acad Audiol; 2016 Jul; 27(7):557-66. PubMed ID: 27406662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech Perception in Noise and Listening Effort of Older Adults With Nonlinear Frequency Compression Hearing Aids.
    Shehorn J; Marrone N; Muller T
    Ear Hear; 2018; 39(2):215-225. PubMed ID: 28806193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of hearing aids and age-related hearing loss on auditory plasticity across three months - An electrical neuroimaging study.
    Giroud N; Lemke U; Reich P; Matthes KL; Meyer M
    Hear Res; 2017 Sep; 353():162-175. PubMed ID: 28705608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of audiovisual ceiling performance on the relationship between reverberation and directional benefit: perception and prediction.
    Wu YH; Bentler RA
    Ear Hear; 2012; 33(5):604-14. PubMed ID: 22677815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comparison of Environment Classification Among Premium Hearing Instruments.
    Yellamsetty A; Ozmeral EJ; Budinsky RA; Eddins DA
    Trends Hear; 2021; 25():2331216520980968. PubMed ID: 33749410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory environment diversity quantified using entropy from real-world hearing aid data.
    Jorgensen E; Xu J; Chipara O; Wu YH
    Front Digit Health; 2023; 5():1141917. PubMed ID: 37090064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.