These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Dysregulation of mitophagy and mitochondrial homeostasis in cancer stem cells: Novel mechanism for anti-cancer stem cell-targeted cancer therapy. Praharaj PP; Patro BS; Bhutia SK Br J Pharmacol; 2022 Nov; 179(22):5015-5035. PubMed ID: 33527371 [TBL] [Abstract][Full Text] [Related]
43. MYC Induces a Hybrid Energetics Program Early in Cell Reprogramming. Prieto J; Seo AY; León M; Santacatterina F; Torresano L; Palomino-Schätzlein M; Giménez K; Vallet-Sánchez A; Ponsoda X; Pineda-Lucena A; Cuezva JM; Lippincott-Schwartz J; Torres J Stem Cell Reports; 2018 Dec; 11(6):1479-1492. PubMed ID: 30472011 [TBL] [Abstract][Full Text] [Related]
44. Mitophagy in hematopoietic stem cells: the case for exploration. Joshi A; Kundu M Autophagy; 2013 Nov; 9(11):1737-49. PubMed ID: 24135495 [TBL] [Abstract][Full Text] [Related]
45. Energy metabolism plasticity enables stemness programs. Folmes CDL; Nelson TJ; Dzeja PP; Terzic A Ann N Y Acad Sci; 2012 Apr; 1254():82-89. PubMed ID: 22548573 [TBL] [Abstract][Full Text] [Related]
46. SQSTM1/p62-Directed Metabolic Reprogramming Is Essential for Normal Neurodifferentiation. Calvo-Garrido J; Maffezzini C; Schober FA; Clemente P; Uhlin E; Kele M; Stranneheim H; Lesko N; Bruhn H; Svenningsson P; Falk A; Wedell A; Freyer C; Wredenberg A Stem Cell Reports; 2019 Apr; 12(4):696-711. PubMed ID: 30827875 [TBL] [Abstract][Full Text] [Related]
47. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Panigrahi DP; Praharaj PP; Bhol CS; Mahapatra KK; Patra S; Behera BP; Mishra SR; Bhutia SK Semin Cancer Biol; 2020 Nov; 66():45-58. PubMed ID: 31351198 [TBL] [Abstract][Full Text] [Related]
48. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Cha Y; Han MJ; Cha HJ; Zoldan J; Burkart A; Jung JH; Jang Y; Kim CH; Jeong HC; Kim BG; Langer R; Kahn CR; Guarente L; Kim KS Nat Cell Biol; 2017 May; 19(5):445-456. PubMed ID: 28436968 [TBL] [Abstract][Full Text] [Related]
49. Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming. Nishimura K; Fukuda A; Hisatake K Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067778 [TBL] [Abstract][Full Text] [Related]
50. Mitochondrial and metabolic remodeling during reprogramming and differentiation of the reprogrammed cells. Choi HW; Kim JH; Chung MK; Hong YJ; Jang HS; Seo BJ; Jung TH; Kim JS; Chung HM; Byun SJ; Han SG; Seo HG; Do JT Stem Cells Dev; 2015 Jun; 24(11):1366-73. PubMed ID: 25590788 [TBL] [Abstract][Full Text] [Related]
51. LIN28A enhances regenerative capacity of human somatic tissue stem cells via metabolic and mitochondrial reprogramming. Pieknell K; Sulistio YA; Wulansari N; Darsono WHW; Chang MY; Ko JY; Chang JW; Kim MJ; Lee MR; Lee SA; Lee H; Lee G; Jung BH; Park H; Kim GH; Kim D; Cho G; Kim CH; Ly DD; Park KS; Lee SH Cell Death Differ; 2022 Mar; 29(3):540-555. PubMed ID: 34556809 [TBL] [Abstract][Full Text] [Related]
52. Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Boya P; Codogno P; Rodriguez-Muela N Development; 2018 Feb; 145(4):. PubMed ID: 29483129 [TBL] [Abstract][Full Text] [Related]
53. Metabolic reprogramming in breast cancer results in distinct mitochondrial bioenergetics between luminal and basal subtypes. Lunetti P; Di Giacomo M; Vergara D; De Domenico S; Maffia M; Zara V; Capobianco L; Ferramosca A FEBS J; 2019 Feb; 286(4):688-709. PubMed ID: 30657636 [TBL] [Abstract][Full Text] [Related]
54. Distinct Mitochondrial Remodeling During Mesoderm Differentiation in a Human-Based Stem Cell Model. Mostafavi S; Balafkan N; Pettersen IKN; Nido GS; Siller R; Tzoulis C; Sullivan GJ; Bindoff LA Front Cell Dev Biol; 2021; 9():744777. PubMed ID: 34722525 [TBL] [Abstract][Full Text] [Related]
55. Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation. MacVicar TD; Lane JD J Cell Sci; 2014 May; 127(Pt 10):2313-25. PubMed ID: 24634514 [TBL] [Abstract][Full Text] [Related]
56. Connecting Mitochondria, Metabolism, and Stem Cell Fate. Wanet A; Arnould T; Najimi M; Renard P Stem Cells Dev; 2015 Sep; 24(17):1957-71. PubMed ID: 26134242 [TBL] [Abstract][Full Text] [Related]
57. Mitochondrial regulation in human pluripotent stem cells during reprogramming and β cell differentiation. Jasra IT; Cuesta-Gomez N; Verhoeff K; Marfil-Garza BA; Dadheech N; Shapiro AMJ Front Endocrinol (Lausanne); 2023; 14():1236472. PubMed ID: 37929027 [TBL] [Abstract][Full Text] [Related]
58. HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Prigione A; Rohwer N; Hoffmann S; Mlody B; Drews K; Bukowiecki R; Blümlein K; Wanker EE; Ralser M; Cramer T; Adjaye J Stem Cells; 2014 Feb; 32(2):364-76. PubMed ID: 24123565 [TBL] [Abstract][Full Text] [Related]
59. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Chen W; Zhao H; Li Y Signal Transduct Target Ther; 2023 Sep; 8(1):333. PubMed ID: 37669960 [TBL] [Abstract][Full Text] [Related]